The Fifty-sixth International Symposium on Functional Equations Bildungshaus Mariatrost, Graz (Austria), June 17–24, 2018
暂无分享,去创建一个
P. K. Sahoo | P. Sahoo | Z. Páles | G. Forti | R. Ger | H. Fripertinger | J. Schwaiger | W. Prager | Svetlana Hübler
[1] R. Badora,et al. On approximate group homomorphisms , 2018, Journal of Mathematical Analysis and Applications.
[2] Andrzej Komisarski,et al. Muirhead inequality for convex orders and a problem of I. Ra\c{s}a on Bernstein polynomials , 2017, 1703.10634.
[3] Gábor Somlai,et al. A characterization of n-associative, monotone, idempotent functions on an interval that have neutral elements , 2016, 1609.00279.
[4] T. Rajba,et al. A solution to the problem of Raşa connected with Bernstein polynomials , 2016, 1604.07381.
[5] Z. Páles,et al. Bernstein–Doetsch Type Theorems with Tabor Type Error Terms for Set-Valued Maps , 2015, 1510.03165.
[6] L. Bogachev,et al. Analysis of the archetypal functional equation in the non-critical case , 2014, 1409.6126.
[7] L. Bogachev,et al. On bounded continuous solutions of the archetypal equation with rescaling , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[8] Mei-Chu Chang,et al. Some consequences of the Polynomial Freiman–Ruzsa Conjecture , 2009 .
[9] Allen and Rosenbloom Paul S. Newell,et al. Mechanisms of Skill Acquisition and the Law of Practice , 1993 .
[10] G. Szabó. φ-Orthogonally additive mappings. I , 1991 .
[11] N. Jacobson,et al. Jordan homomorphisms of rings , 1950 .
[12] I. Kaplansky. Semi-automorphisms of rings , 1947 .
[13] D. H. Hyers. On the Stability of the Linear Functional Equation. , 1941, Proceedings of the National Academy of Sciences of the United States of America.
[14] G. Doetsch,et al. Zur Theorie der konvexen Funktionen , 1915 .
[15] D. Fournier-Prunaret,et al. TRANSLATION EQUATION AND SINCOV’S EQUATION – A HISTORICAL REMARK , 2014 .
[16] O. Strauch,et al. ON STATISTICAL LIMIT POINTS , 2000 .
[17] P. Johnson-Laird. The computer and the mind: an introduction to cognitive science , 1988 .
[18] G. Ancochea. Le théorème de von Staudt en géométrie projective quaternionienne. , 1942 .