MAGNETIC NANOPARTICLES IN THE INTERSTELLAR MEDIUM: EMISSION SPECTRUM AND POLARIZATION

The presence of ferromagnetic or ferrimagnetic nanoparticles in the interstellar medium would give rise to magnetic dipole radiation at microwave and submillimeter frequencies. Such grains may account for the strong millimeter-wavelength emission observed from a number of low-metallicity galaxies, including the Small Magellanic Cloud. We calculate the absorption and scattering cross sections for such grains, with particular attention to metallic Fe, magnetite Fe{sub 3}O{sub 4}, and maghemite {gamma}-Fe{sub 2}O{sub 3}, all potentially present in the interstellar medium. The rate of Davis-Greenstein alignment by magnetic dissipation is also estimated. We determine the temperature of free-flying magnetic grains heated by starlight and calculate the polarization of the magnetic dipole emission from both free-fliers and inclusions. For inclusions, the magnetic dipole emission is expected to be polarized orthogonally relative to the normal electric dipole radiation. Magnetic dipole radiation will contribute significantly to the 20-40 GHz anomalous microwave emission only if a large fraction of the Fe is in metallic Fe iron nanoparticles with extreme elongations. Finally, we present self-consistent dielectric functions for metallic Fe, magnetite Fe{sub 3}O{sub 4}, and maghemite {gamma}-Fe{sub 2}O{sub 3}, enabling calculation of absorption and scattering cross sections from microwave to X-ray wavelengths.

[1]  W. Duley Magnetic alignment of interstellar grains , 1978 .

[2]  D. Dunlop,et al.  Low-temperature properties of a single crystal of magnetite oriented along principal magnetic axes , 1999 .

[3]  A. Jones Iron or iron oxide grains in the interstellar medium , 1990 .

[4]  M. Sauvage,et al.  Probing the dust properties of galaxies up to submillimetre wavelengths. II. Dust-to-gas mass ratio trends with metallicity and the submm excess in dwarf galaxies , 2011, 1104.0827.

[5]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[6]  Z. Šimša,et al.  Magneto-optical properties of manganese ferrite films , 2002 .

[7]  A. Goodman,et al.  A Point in Favor of the Superparamagnetic Grain Hypothesis , 1995 .

[8]  Merill E. Milham Electromagnetic Scattering by Magnetic Spheres: Theory and Algorithms. , 1994 .

[9]  Yoshio Saito,et al.  Phase Transition Temperature of γ-Fe2O3 Ultrafine Particle , 2004 .

[10]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[11]  K. Bennemann,et al.  Magnetic nanostructures. , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  C. Ambrosch-Draxl,et al.  Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals , 2009 .

[13]  A. Lazarian,et al.  Electric Dipole Radiation from Spinning Dust Grains , 1998, astro-ph/9802239.

[14]  A. Dzardanov,et al.  Radiophysical and Dielectric Properties of Ore Minerals in 12--145 GHz Frequency Range , 2010 .

[15]  Interstellar Dust and Related Topics , 2012 .

[16]  S. Chikazumi,et al.  Magnetocrystalline Anisotropy of Low Temperature Phase of Magnetite , 1976 .

[17]  AN ANOMALOUS COMPONENT OF GALACTIC EMISSION , 1997, astro-ph/9705241.

[18]  A. Lazarian,et al.  SPINNING DUST EMISSION: EFFECTS OF IRREGULAR GRAIN SHAPE, TRANSIENT HEATING, AND COMPARISON WITH WILKINSON MICROWAVE ANISOTROPY PROBE RESULTS , 2011, The Astrophysical Journal.

[19]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[20]  Edward B. Jenkins,et al.  A UNIFIED REPRESENTATION OF GAS-PHASE ELEMENT DEPLETIONS IN THE INTERSTELLAR MEDIUM , 2009, 0905.3173.

[21]  L. Spitzer,et al.  Magnetic Alignment of Interstellar Grains , 1967 .

[22]  Bruce T. Draine,et al.  POLARIZED FAR-INFRARED AND SUBMILLIMETER EMISSION FROM INTERSTELLAR DUST , 2008, 0809.2094.

[23]  S. C. Madden,et al.  ISM properties in low-metallicity environments II. The dust spectral energy distribution of NGC 1569 , 2003, astro-ph/0306192.

[24]  F. Tepehan,et al.  Optical and electrochemical characteristics of sol–gel deposited iron oxide films , 1999 .

[25]  N. Wickramasinghe,et al.  Optical Properties of Graphite–Iron–Silicate Grain Mixtures , 1971 .

[26]  D. Paradis,et al.  Far-infrared to millimeter astrophysical dust emission II. Comparison of the two-level systems (TLS) model with astronomical data , 2011, 1107.5179.

[27]  J. Mathis The alignment of interstellar grains , 1986 .

[28]  C. Schalen ON SOME PROBLEMS OF INTERSTELLAR ABSORPTION , 1965 .

[29]  R. A. Matula,et al.  Electrical Resistivity of Ten Selected Binary Alloy Systems , 1983 .

[30]  O. Heavens Handbook of Optical Constants of Solids II , 1992 .

[31]  V. Brabers Chapter 3 Progress in spinel ferrite research , 1995 .

[32]  P. Martin On the Value of GEMS (Glass with Embedded Metal and Sulphides) , 1995 .

[33]  E. M. Lifshitz,et al.  Electrodynamics of continuous media (in Russian) , 1982 .

[34]  Magnetic Dipole Microwave Emission from Dust Grains , 1998, astro-ph/9807009.

[35]  Edward J. Wollack,et al.  Galactic Microwave Emission at Degree Angular Scales , 1997, astro-ph/9702172.

[36]  Petr Chýlekt,et al.  Light scattering by small particles in an absorbing medium , 1977 .

[37]  Sahrim Ahmad,et al.  Magnetic and microwave absorbing properties of magnetite-thermoplastic natural rubber nanocomposites , 2010 .

[38]  A. Lazarian,et al.  Diffuse Galactic Emission from Spinning Dust Grains , 1997, astro-ph/9710152.

[39]  M. Sauvage,et al.  Probing the dust properties of galaxies up to submillimetre wavelengths. I. The spectral energy dist , 2009, 0910.0043.

[40]  Guilaine Lagache,et al.  Submillimeter to centimeter excess emission from the Magellanic Clouds - II. On the nature of the excess , 2010, 1008.2875.

[41]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[42]  B. Santo,et al.  Solid State , 2012 .

[43]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[44]  J. Greenstein,et al.  The Polarization of Starlight by Aligned Dust Grains. , 1951 .

[45]  H. J. Hagger,et al.  Microwave Ferrites And Ferrimagnetics , 1962 .

[46]  Lazarian,et al.  Resonance Paramagnetic Relaxation and Alignment of Small Grains. , 2000, The Astrophysical journal.

[47]  A. LazarianB. Draine Thermal flipping and thermal trapping: New elements in grain dynamics , 1999 .

[48]  S. C. Madden,et al.  ISM properties in low-metallicity environments. III. The dust spectral energy distributions of II Zw 40, He 2-10 and NGC 1140 , 2005 .

[49]  K. Koval,et al.  Epitaxial films of iron oxides grown by the method of chemical transport reaction , 1984 .

[50]  B. T. Draine,et al.  Radiative Torques on Interstellar Grains: I. Superthermal Spinup , 1996 .

[51]  T. Shendruk,et al.  The effect of surface spin disorder on the magnetism of γ-Fe2O3 nanoparticle dispersions , 2007 .

[52]  Subir K. Banerjee,et al.  Single‐domain grain size limits for metallic iron , 1975 .

[53]  B. Draine,et al.  THE SUBMILLIMETER AND MILLIMETER EXCESS OF THE SMALL MAGELLANIC CLOUD: MAGNETIC DIPOLE EMISSION FROM MAGNETIC NANOPARTICLES? , 2012, 1205.6810.

[54]  On the thermal behaviour of small iron grains , 2004, astro-ph/0412425.

[55]  E. Purcell,et al.  Suprathermal rotation of interstellar grains , 1979 .

[56]  G. J. Bendo,et al.  The Herschel Virgo Cluster Survey - V. Star-forming dwarf galaxies – dust in metal-poor environments , 2010, 1005.3058.

[57]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[58]  W. Reach,et al.  Submillimeter to centimeter excess emission from the Magellanic Clouds - I. Global spectral energy distribution , 2010 .

[59]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[60]  津田 惟雄,et al.  Electronic conduction in oxides , 2000 .

[61]  D. L. Clements,et al.  Herschel photometric observations of the low metallicity dwarf galaxy NGC 1705 , 2010, 1005.2091.