Correlating blocking temperatures with relaxation mechanisms in monometallic single-molecule magnets with high energy barriers (Ueff > 600 K).

We report an empirical correlation between the blocking temperature of large energy barrier SMMs and the relaxation time at the point where the Raman and Orbach relaxation mechanisms have the same rate; this supports the idea that the ability to retain magnetisation is controlled by the Raman relaxation process in these materials.

[1]  Fu-Sheng Guo,et al.  Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet , 2018, Science.

[2]  B. Harvey,et al.  High-temperature magnetic blocking and magneto-structural correlations in a series of dysprosium(iii) metallocenium single-molecule magnets† †Electronic supplementary information (ESI) available: IR and NMR spectroscopy, synthesis of Y1–Y4, and magnetic characterization. Structures of compounds 1–4 , 2018, Chemical science.

[3]  Yan‐Zhen Zheng,et al.  Field- and temperature-dependent quantum tunnelling of the magnetisation in a large barrier single-molecule magnet , 2018, Nature Communications.

[4]  Song Gao,et al.  A soft phosphorus atom to “harden” an erbium(iii) single-ion magnet† †Electronic supplementary information (ESI) available. CCDC 1835954–1835958. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c8sc01626g , 2018, Chemical science.

[5]  José J. Baldoví,et al.  Spin states, vibrations and spin relaxation in molecular nanomagnets and spin qubits: a critical perspective , 2018, Chemical science.

[6]  N. Chilton,et al.  Synthesis and Electronic Structures of Heavy Lanthanide Metallocenium Cations. , 2017, Journal of the American Chemical Society.

[7]  David P. Mills,et al.  Molecular magnetic hysteresis at 60 kelvin in dysprosocenium , 2017, Nature.

[8]  B. Büchner,et al.  Record-high thermal barrier of the relaxation of magnetization in the nitride clusterfullerene Dy2ScN@C80-Ih† , 2017, Chemical communications.

[9]  S. Sanvito,et al.  The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets , 2017, Nature Communications.

[10]  Jonathan L. Brosmer,et al.  Pursuit of Record Breaking Energy Barriers: A Study of Magnetic Axiality in Diamide Ligated DyIII Single-Molecule Magnets. , 2017, Journal of the American Chemical Society.

[11]  Yan‐Zhen Zheng,et al.  On Approaching the Limit of Molecular Magnetic Anisotropy: A Near-Perfect Pentagonal Bipyramidal Dysprosium(III) Single-Molecule Magnet. , 2016, Angewandte Chemie.

[12]  N. Chilton,et al.  A Low-Symmetry Dysprosium Metallocene Single-Molecule Magnet with a High Anisotropy Barrier. , 2016, Angewandte Chemie.

[13]  Song Gao,et al.  (Boratabenzene)(cyclooctatetraenyl) lanthanide complexes: a new type of organometallic single-ion magnet , 2016 .

[14]  W. Wernsdorfer,et al.  A Stable Pentagonal Bipyramidal Dy(III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K. , 2016, Journal of the American Chemical Society.

[15]  G. Rajaraman,et al.  An air-stable Dy(iii) single-ion magnet with high anisotropy barrier and blocking temperature , 2016, Chemical science.

[16]  Joseph M. Zadrozny,et al.  Large spin-relaxation barriers for the low-symmetry organolanthanide complexes [Cp*2 Ln(BPh4 )] (Cp*=pentamethylcyclopentadienyl; Ln=Tb, Dy). , 2014, Chemistry.

[17]  L. Chibotaru,et al.  Coupling strategies to enhance single-molecule magnet properties of erbium-cyclooctatetraenyl complexes. , 2014, Journal of the American Chemical Society.

[18]  Liviu F Chibotaru,et al.  Fine-tuning the local symmetry to attain record blocking temperature and magnetic remanence in a single-ion magnet. , 2014, Angewandte Chemie.

[19]  Jinkui Tang,et al.  Equatorially coordinated lanthanide single ion magnets. , 2014, Journal of the American Chemical Society.

[20]  M. Murugesu,et al.  A sandwich complex with axial symmetry for harnessing the anisotropy in a prolate erbium(III) ion. , 2014, Chemical communications.

[21]  Katie R. Meihaus,et al.  Magnetic blocking at 10 K and a dipolar-mediated avalanche in salts of the bis(η8-cyclooctatetraenide) complex [Er(COT)2]-. , 2013, Journal of the American Chemical Society.

[22]  E. Coronado,et al.  Influence of peripheral substitution on the magnetic behavior of single-ion magnets based on homo- and heteroleptic Tb(III) bis(phthalocyaninate). , 2013, Chemistry.

[23]  Hirofumi Tanaka,et al.  Proton-induced switching of the single molecule magnetic properties of a porphyrin based Tb(III) double-decker complex. , 2012, Chemical communications.

[24]  Song Gao,et al.  An organometallic single-ion magnet. , 2011, Journal of the American Chemical Society.

[25]  S. Koshihara,et al.  Significant increase of the barrier energy for magnetization reversal of a single-4f-ionic single-molecule magnet by a longitudinal contraction of the coordination space. , 2007, Inorganic chemistry.

[26]  S. Koshihara,et al.  Upward temperature shift of the intrinsic phase lag of the magnetization of Bis(phthalocyaninato)terbium by ligand oxidation creating an S = 1/2 spin. , 2004, Inorganic chemistry.