The Forward Problem of Electrocardiography

The forward problem of electrocardiography involves compu ting the potentials and currents within the body from a known electrical potential distribution or activation seq u nce in the heart. This paper details an efficient computati on l model of the human torso for use in electrocardiographic pro blems. The model uses a combined finite element/boundary element method which uses bicubic Hermite basis functions. The model geometry is obtained by fitting to data points measured from magnetic resonance images (MRI) using a non-l i ear fitting procedure. Simple forward simulations of the normal heartbeat are used to calculate standard `12 lead' el ectrocardiographic (ECG) signals and body surface potenti al

[1]  J L Lehr,et al.  Effects of paddle placement and size on defibrillation current distribution: a three-dimensional finite element model. , 1993, IEEE transactions on bio-medical engineering.

[2]  G. Huiskamp,et al.  The depolarization sequence of the human heart surface computed from measured body surface potentials , 1988, IEEE Transactions on Biomedical Engineering.

[3]  M. N. Morrow,et al.  An assessment of variable thickness and fiber orientation of the skeletal muscle layer on electrocardiographic calculations , 1991, IEEE Transactions on Biomedical Engineering.

[4]  T. Pilkington,et al.  The combination method: a numerical technique for electrocardiographic calculations , 1989, IEEE Transactions on Biomedical Engineering.

[5]  R. Gulrajani,et al.  A Simulation Study of the Effects of Torso Inhomogeneities on Electrocardiographic Potentials, using Realistic Heart and Torso Models , 1983, Circulation research.

[6]  A. Waller A Demonstration of Man of Electromotive Changes Accompanying the Heart's Beat , 2004, The Journal of physiology.

[7]  G. Dower,et al.  On Deriving the Electrocardiogram from Vectorcardiographic Leads , 1980, Clinical cardiology.

[8]  P. Hunter,et al.  Mathematical model of geometry and fibrous structure of the heart. , 1991, The American journal of physiology.

[9]  S. Rush,et al.  Qualitative effects of thoracic resistivity variations on the interpretation of electrocardiograms: the low resistance surface layer. , 1968, American Heart Journal.

[10]  Andrew J. Pullan,et al.  ON THE CHOICE OF A DERIVATIVE BOUNDARY ELEMENT FORMULATION USING HERMITE INTERPOLATION , 1996 .

[11]  Robert Guardo,et al.  A Simulation Study of the Single Moving Dipole Representation of Cardiac Electrical Activity , 1982, IEEE Transactions on Biomedical Engineering.

[12]  W. Einthoven,et al.  Die galvanometrische Registrirung des menschlichen Elektrokardiogramms, zugleich eine Beurtheilung der Anwendung des Capillar-Elektrometers in der Physiologie , 1903, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[13]  C R Johnson,et al.  A computer model for the study of electrical current flow in the human thorax. , 1992, Computers in biology and medicine.

[14]  Yijun Liu,et al.  Some identities for fundamental solutions and their applications to weakly-singular boundary element formulations , 1991 .

[15]  Alistair A. Young,et al.  Epicardial surface estimation from coronary angiograms , 1989, Comput. Vis. Graph. Image Process..

[16]  A. J. Pullan,et al.  Geometric modeling of the human torso using cubic hermite elements , 2007, Annals of Biomedical Engineering.