Decision making in living cells: lessons from a simple system.

The life cycle of bacteriophage lambda serves as a simplified paradigm for cell-fate decisions. The ongoing quantitative, high-resolution experimental investigation of this life cycle has produced some important insights in recent years. These insights have to do with the way cells choose among alternative fates, how they maintain long-term memory of their gene-expression state, and how they switch from one stable state to another. The recent studies have highlighted the role of spatiotemporal effects in cellular processes and the importance of distinguishing chemical stochasticity from possible hidden variables in cellular decision making.

[1]  Ari Helenius,et al.  How Viruses Enter Animal Cells , 2004, Science.

[2]  D. Court,et al.  Switches in bacteriophage lambda development. , 2005, Annual review of genetics.

[3]  O. Sliusarenko,et al.  Spatial organization of the flow of genetic information in bacteria , 2010, Nature.

[4]  K. Sneppen,et al.  . s of t ] 1 9 O ct 2 00 0 Stability Puzzles in Phage λ , 2008 .

[5]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .

[6]  H. Kneser Repair of ultraviolet lesions and induction of λ prophage , 1966 .

[7]  S. Atsumi,et al.  A synthetic phage λ regulatory circuit , 2006, Proceedings of the National Academy of Sciences.

[8]  Ido Golding,et al.  RNA dynamics in live Escherichia coli cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  G. K. Ackers,et al.  Coupled energetics of lambda cro repressor self-assembly and site-specific DNA operator binding II: cooperative interactions of cro dimers. , 2000, Journal of molecular biology.

[10]  W. Bialek,et al.  Probing the Limits to Positional Information , 2007, Cell.

[11]  Mark Ptashne,et al.  On the use of the word ‘epigenetic’ , 2007, Current Biology.

[12]  G. K. Ackers,et al.  Quantitative model for gene regulation by lambda phage repressor. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[13]  S. Atsumi,et al.  Regulatory circuit design and evolution using phage λ , 2004 .

[14]  D. Court,et al.  Host responses influence on the induction of lambda prophage , 2008, Molecular microbiology.

[15]  P. Kourilsky,et al.  Lysogenization by bacteriophage lambda. III. Multiplicity dependent phenomena occuring upon infection by lambda. , 1975, Biochimie.

[16]  E. Chapman-McQuiston,et al.  On kinetics of phage adsorption. , 2007, Biophysical journal.

[17]  D. Tranchina,et al.  Stochastic mRNA Synthesis in Mammalian Cells , 2006, PLoS biology.

[18]  Mark Marsh,et al.  Virus Entry: Open Sesame , 2006, Cell.

[19]  S. Atsumi,et al.  Role of the lytic repressor in prophage induction of phage λ as analyzed by a module-replacement approach , 2006 .

[20]  J. Yeomans,et al.  Statistical mechanics of phase transitions , 1992 .

[21]  M. Schwartz Reversible interaction between coliphage lambda and its receptor protein. , 1975, Journal of molecular biology.

[22]  Joseph C. Pearson,et al.  Transcriptional autoregulation in development , 2009, Current Biology.

[23]  Amnon Amir,et al.  Noise in timing and precision of gene activities in a genetic cascade , 2007 .

[24]  P. Sorger,et al.  Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis , 2009, Nature.

[25]  J. W. Little,et al.  Sequence Tolerance of the Phage λ PRM Promoter: Implications for Evolution of Gene Regulatory Circuitry , 2004 .

[26]  P. Lawrence Drosophila Unfolded. (Book Reviews: The Making of a Fly. The Genetics of Animal Design.) , 1992 .

[27]  J. W. Little,et al.  Robustness of a gene regulatory circuit , 1999, The EMBO journal.

[28]  Kirsten L. Frieda,et al.  A Stochastic Single-Molecule Event Triggers Phenotype Switching of a Bacterial Cell , 2008, Science.

[29]  M. A. Shea,et al.  The OR control system of bacteriophage lambda. A physical-chemical model for gene regulation. , 1985, Journal of molecular biology.

[30]  L. A. Sepúlveda,et al.  Lysogen stability is determined by the frequency of activity bursts from the fate-determining gene , 2010, Molecular systems biology.

[31]  E. Cox,et al.  Population Fitness and the Regulation of Escherichia coli Genes by Bacterial Viruses , 2005, PLoS biology.

[32]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[33]  I. Wang,et al.  Holins: the protein clocks of bacteriophage infections. , 2000, Annual review of microbiology.

[34]  Eberhard O Voit,et al.  Collective decision making in bacterial viruses. , 2008, Biophysical journal.

[35]  Shinya Yamanaka,et al.  Elite and stochastic models for induced pluripotent stem cell generation , 2009, Nature.

[36]  M. Kessel,et al.  Bacteriophage infection is targeted to cellular poles , 2008, Molecular microbiology.

[37]  K. Sneppen,et al.  Epigenetics as a first exit problem. , 2001, Physical review letters.

[38]  N. Friedman,et al.  Stochastic protein expression in individual cells at the single molecule level , 2006, Nature.

[39]  Pamela A. Silver,et al.  Making Cellular Memories , 2010, Cell.

[40]  H. Berg Random Walks in Biology , 2018 .

[41]  M. Manson,et al.  Holins kill without warning , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  D. Court,et al.  A New Look at Bacteriophage λ Genetic Networks , 2006 .

[43]  Nir Friedman,et al.  Linking stochastic dynamics to population distribution: an analytical framework of gene expression. , 2006, Physical review letters.

[44]  R. Sauer,et al.  Mutations in lambda repressor's amino-terminal domain: implications for protein stability and DNA binding. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[45]  I. Dodd,et al.  Octamerization of lambda CI repressor is needed for effective repression of P(RM) and efficient switching from lysogeny. , 2001, Genes & development.

[46]  R. Ellis Macromolecular crowding : obvious but underappreciated , 2022 .

[47]  H. McAdams,et al.  Circuit simulation of genetic networks. , 1995, Science.

[48]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[49]  Howard C. Berg,et al.  E. coli in Motion , 2003 .

[50]  Jerome T. Mettetal,et al.  Heritable Stochastic Switching Revealed by Single-Cell Genealogy , 2007, PLoS biology.

[51]  J. Theriot,et al.  Complex spatial distribution and dynamics of an abundant Escherichia coli outer membrane protein, LamB , 2004, Molecular microbiology.

[52]  Leor S Weinberger,et al.  Stochastic gene expression as a molecular switch for viral latency. , 2009, Current opinion in microbiology.

[53]  E. Cox,et al.  Physical nature of bacterial cytoplasm. , 2006, Physical review letters.

[54]  Drew Endy,et al.  Determination of cell fate selection during phage lambda infection , 2008, Proceedings of the National Academy of Sciences.

[55]  Vahid Shahrezaei,et al.  Analytical distributions for stochastic gene expression , 2008, Proceedings of the National Academy of Sciences.

[56]  Rajan P Kulkarni,et al.  Tunability and Noise Dependence in Differentiation Dynamics , 2007, Science.

[57]  N. Goldenfeld,et al.  Lambda-prophage induction modeled as a cooperative failure mode of lytic repression. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  A. D. Hershey,et al.  The Bacteriophage Lambda. , 1971 .

[59]  E. Chapman-McQuiston,et al.  Stochastic receptor expression allows sensitive bacteria to evade phage attack. Part I: experiments. , 2008, Biophysical journal.

[60]  Hannah H. Chang,et al.  Transcriptome-wide noise controls lineage choice in mammalian progenitor cells , 2008, Nature.

[61]  M. Delbrück,et al.  THE GROWTH OF BACTERIOPHAGE , 1939, The Journal of general physiology.

[62]  T. Elston,et al.  Stochasticity in gene expression: from theories to phenotypes , 2005, Nature Reviews Genetics.

[63]  Claude Desplan,et al.  Stochasticity and Cell Fate , 2008, Science.

[64]  Haw Yang,et al.  DNA looping can enhance lysogenic CI transcription in phage lambda , 2008, Proceedings of the National Academy of Sciences.

[65]  Jon Cohen DNA Duplications and Deletions Help Determine Health , 2007, Science.

[66]  Nir Friedman,et al.  Quantitative kinetic analysis of the bacteriophage λ genetic network , 2005 .

[67]  Ian B. Dodd,et al.  Cro’s role in the CI–Cro bistable switch is critical for λ’s transition from lysogeny to lytic development , 2007 .

[68]  Lucy Shapiro,et al.  Getting organized — how bacterial cells move proteins and DNA , 2008, Nature Reviews Microbiology.

[69]  N. Barkai,et al.  Scaling of the BMP activation gradient in Xenopus embryos , 2008, Nature.

[70]  Mark Ptashne,et al.  A Genetic Switch, Phage Lambda Revisited , 2004 .

[71]  E. Cox,et al.  Real-Time Kinetics of Gene Activity in Individual Bacteria , 2005, Cell.

[72]  D. Melton,et al.  Nuclear Reprogramming in Cells , 2008, Science.

[73]  A. Lévine,et al.  Inactivation of prophage λ repressor in Vivo , 1979 .

[74]  J. Monod,et al.  Teleonomic mechanisms in cellular metabolism, growth, and differentiation. , 1961, Cold Spring Harbor symposia on quantitative biology.

[75]  Jean Sippy,et al.  Decision Making at a Subcellular Level Determines the Outcome of Bacteriophage Infection , 2010, Cell.

[76]  M. Elowitz,et al.  Cis Interactions between Notch and Delta Generate Mutually Exclusive Signaling States , 2010, Nature.

[77]  D. Mount,et al.  The SOS regulatory system of Escherichia coli , 1982, Cell.

[78]  William Bialek,et al.  Stability and Noise in Biochemical Switches , 2000, NIPS.

[79]  D. Dubnau,et al.  Noise in Gene Expression Determines Cell Fate in Bacillus subtilis , 2007, Science.

[80]  Bernard Chasan Physical Biology of the Cell , 2010 .

[81]  Alexander van Oudenaarden,et al.  Variability in gene expression underlies incomplete penetrance , 2009, Nature.

[82]  N. Wingreen,et al.  Exponential sensitivity of noise-driven switching in genetic networks , 2007, Physical biology.

[83]  J. A. Halliday,et al.  Transcriptional Infidelity Promotes Heritable Phenotypic Change in a Bistable Gene Network , 2009, PLoS biology.

[84]  M. Elowitz,et al.  Protein Mobility in the Cytoplasm ofEscherichia coli , 1999, Journal of bacteriology.

[85]  J. W. Little,et al.  Positive Autoregulation of cI Is a Dispensable Feature of the Phage λ Gene Regulatory Circuitry , 2005 .

[86]  X. Xie,et al.  Probing Gene Expression in Live Cells, One Protein Molecule at a Time , 2006, Science.

[87]  Nir Friedman,et al.  Precise Temporal Modulation in the Response of the SOS DNA Repair Network in Individual Bacteria , 2005, PLoS biology.

[88]  Farren J. Isaacs,et al.  Prediction and measurement of an autoregulatory genetic module , 2003, Proceedings of the National Academy of Sciences of the United States of America.