Extended Frontiers in Optimization Techniques

Optimization has been expanding in all directions at an astonishing rate during the last few decades. New algorithmic and theoretical techniques have been developed, the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge of all aspects of the field has grown even more profound (Floudas and Pardalos 2002; Pardalos and Resende 2002). At the same time, one of the most striking trends in optimization is the constantly increasing emphasis on the interdisciplinary nature of the field. Optimization today is a basic research tool in all areas of engineering, medicine and the sciences. The decision making tools based on optimization procedures are successfully applied in a wide range of practical problems arising in virtually any sphere of human activities, including biomedicine, energy management, aerospace research, telecommunications and finance. In this chapter we will briefly discuss the current developments and emerging challenges in optimization techniques and their applications.

[1]  Andrzej Stachurski Parallel Computing in Optimization , 2000, Scalable Comput. Pract. Exp..

[2]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[3]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[4]  R. P. Harvey The decomposition principle for linear programs , 1964 .

[5]  Michael A. Saunders,et al.  MINOS 5. 0 user's guide , 1983 .

[6]  Mihalis Yannakakis,et al.  The input/output complexity of transitive closure , 2005, Annals of Mathematics and Artificial Intelligence.

[7]  Ricardo C. Corrêa,et al.  Models for Parallel and Distributed Computation: Theory, Algorithmic Techniques, and Applications , 2002 .

[8]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[9]  Panos M. Pardalos,et al.  Handbook of applied optimization , 2002 .

[10]  P. Pardalos,et al.  Novel Approaches to Hard Discrete Optimization , 2003 .

[11]  Jeff T. Linderoth,et al.  Solving large quadratic assignment problems on computational grids , 2002, Math. Program..

[12]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[13]  C. Ribeiro,et al.  Essays and Surveys in Metaheuristics , 2002, Operations Research/Computer Science Interfaces Series.

[14]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[15]  Panos M. Pardalos,et al.  Discrete Mathematical Problems with Medical Applications , 2000 .

[16]  G. Dantzig 23. A Decomposition Principle for Linear Programs , 1963 .

[17]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[18]  William Nick Street,et al.  Breast Cancer Diagnosis and Prognosis Via Linear Programming , 1995, Oper. Res..

[19]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[20]  J. B. Rosen The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints , 1960 .

[21]  Leo Liberti,et al.  Introduction to Global Optimization , 2006 .

[22]  J. B. Rosen The gradient projection method for nonlinear programming: Part II , 1961 .

[23]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[24]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[25]  R. Wets,et al.  Stochastic programming , 1989 .

[26]  Manuel Laguna,et al.  Tabu Search , 1997 .

[27]  Leonidas D. Iasemidis,et al.  Quadratic Binary Programming and Dynamical System Approach to Determine the Predictability of Epileptic Seizures , 2001, J. Comb. Optim..

[28]  Jack Dongarra,et al.  PVM: Parallel virtual machine: a users' guide and tutorial for networked parallel computing , 1995 .

[29]  Guoliang Xue,et al.  Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding, Proceedings of a DIMACS Workshop, USA, March 20-21, 1995 , 1995, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding.

[30]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .

[31]  Nicholas I. M. Gould,et al.  Lancelot: A FORTRAN Package for Large-Scale Nonlinear Optimization (Release A) , 1992 .

[32]  Rajkumar Buyya,et al.  High Performance Cluster Computing: Architectures and Systems , 1999 .

[33]  Jeffrey Scott Vitter External memory algorithms , 1998, PODS '98.

[34]  R. Bixby,et al.  On the Solution of Traveling Salesman Problems , 1998 .

[35]  Leon S. Lasdon,et al.  Optimization Theory of Large Systems , 1970 .

[36]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[37]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[38]  David Gelernter,et al.  The Linda® Alternative to Message-Passing Systems , 1994, Parallel Comput..

[39]  Jeffrey Scott Vitter,et al.  External memory algorithms and data structures: dealing with massive data , 2001, CSUR.

[40]  Panos M. Pardalos,et al.  Handbook of Massive Data Sets , 2002, Massive Computing.