A Root-Node-Based Algebraic Multigrid Method

This paper provides a unified and detailed presentation of root-node style algebraic multigrid (AMG). Algebraic multigrid is a popular and effective iterative method for solving large, sparse linear systems that arise from discretizing partial differential equations. However, while AMG is designed for symmetric positive definite matrices (SPD), certain SPD problems, such as anisotropic diffusion, are still not adequately addressed by existing methods. Non-SPD problems pose an even greater challenge, and in practice AMG is often not considered as a solver for such problems. The focus of this paper is on so-called root-node AMG, which can be viewed as a combination of classical and aggregation-based multigrid. An algorithm for root-node is outlined and a filtering strategy is developed, which is able to control the cost of using root-node AMG, particularly on difficult problems. New theoretical motivation is provided for root-node and energy-minimization as applied to symmetric as well non-symmetric systems. Numerical results are then presented demonstrating the robust ability of root-node to solve non-symmetric problems, systems-based problems, and difficult SPD problems, including strongly anisotropic diffusion, convection-diffusion, and upwind steady-state transport, in a scalable manner. New, detailed estimates of the computational cost of the setup and solve phase are given for each example, providing additional support for root-node AMG over alternative methods.

[1]  Jacob B. Schroder,et al.  A new perspective on strength measures in algebraic multigrid , 2010, Numer. Linear Algebra Appl..

[2]  Thomas A. Manteuffel,et al.  An energy‐based AMG coarsening strategy , 2006, Numer. Linear Algebra Appl..

[3]  Gabriel Wittum,et al.  Competence in High Performance Computing 2010: Proceedings of an International Conference on Competence in High Performance Computing, June 2010, Schloss Schwetzingen, Germany , 2012, HiPC 2012.

[4]  Edward W. Larsen,et al.  Fast iterative methods for discrete-ordinates particle transport calculations , 2002 .

[5]  Robert D. Falgout,et al.  Compatible Relaxation and Coarsening in Algebraic Multigrid , 2009, SIAM J. Sci. Comput..

[6]  Ludmil T. Zikatanov,et al.  An algebraic multilevel method for anisotropic elliptic equations based on subgraph matching , 2012, Numer. Linear Algebra Appl..

[7]  Thomas A. Manteuffel,et al.  Least-Squares Finite Element Discretization of the Neutron Transport Equation in Spherical Geometry , 2015, SIAM J. Sci. Comput..

[8]  A. Brandt,et al.  Algebraic distance for anisotropic diffusion problems: multilevel results , 2014, 1409.4702.

[9]  Marian Brezina,et al.  Convergence of algebraic multigrid based on smoothed aggregation , 1998, Numerische Mathematik.

[10]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[11]  Achi Brandt,et al.  Bootstrap AMG , 2011, SIAM J. Sci. Comput..

[12]  Jacob B. Schroder,et al.  A General Interpolation Strategy for Algebraic Multigrid Using Energy Minimization , 2011, SIAM J. Sci. Comput..

[13]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[14]  Jim E. Morel,et al.  Spatial Finite-Element Lumping Techniques for the Quadrilateral Mesh Sn Equations in X-Y Geometry , 2007 .

[15]  Tony F. Chan,et al.  Detection of Strong Coupling in Algebraic Multigrid Solvers , 2000 .

[16]  Ulrike Meier Yang,et al.  Improving algebraic multigrid interpolation operators for linear elasticity problems , 2010, Numer. Linear Algebra Appl..

[17]  Ray S. Tuminaro,et al.  Multigrid transfers for nonsymmetric systems based on Schur complements and Galerkin projections , 2014, Numer. Linear Algebra Appl..

[18]  Robert D. Falgout,et al.  Multigrid Smoothers for Ultra-Parallel Computing , 2011 .

[19]  W. Marsden I and J , 2012 .

[20]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[21]  T. Manteuffel,et al.  Adaptive Smoothed Aggregation ( α SA ) Multigrid ∗ , 2005 .

[22]  Robert D. Falgout,et al.  Multigrid Smoothers for Ultraparallel Computing , 2011, SIAM J. Sci. Comput..

[23]  Yvan Notay,et al.  Algebraic Theory of Two-Grid Methods , 2015 .

[24]  Scott P. MacLachlan,et al.  Theoretical bounds for algebraic multigrid performance: review and analysis , 2014, Numer. Linear Algebra Appl..

[25]  U. Yang,et al.  Distance-two interpolation for parallel algebraic multigrid , 2007 .

[26]  Panayot S. Vassilevski,et al.  An improved convergence analysis of smoothed aggregation algebraic multigrid , 2012, Numer. Linear Algebra Appl..

[27]  Robert D. Falgout,et al.  hypre: A Library of High Performance Preconditioners , 2002, International Conference on Computational Science.

[28]  Jonathan J. Hu,et al.  A new smoothed aggregation multigrid method for anisotropic problems , 2007, Numer. Linear Algebra Appl..

[29]  Thomas A. Manteuffel,et al.  Towards Adaptive Smoothed Aggregation (AlphaSA) for Nonsymmetric Problems , 2010, SIAM J. Sci. Comput..

[30]  Artem Napov,et al.  Algebraic analysis of aggregation‐based multigrid , 2011, Numer. Linear Algebra Appl..

[31]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[32]  S. McCormick,et al.  Towards Adaptive Smoothed Aggregation (αsa) for Nonsymmetric Problems * , 2022 .

[33]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .

[34]  J. Mandel,et al.  Energy optimization of algebraic multigrid bases , 1999 .

[35]  Luke N. Olson Components of a more robust multilevel solver for emerging ar- chitectures and complex applications , 2011 .

[36]  L. Zikatanov,et al.  Algebraic Multigrid Methods Based on Compatible Relaxation and Energy Minimization , 2007 .

[37]  Anne Greenbaum,et al.  Analysis of an aggregation‐based algebraic two‐grid method for a rotated anisotropic diffusion problem , 2015, Numer. Linear Algebra Appl..

[38]  O. E. Livne,et al.  Coarsening by compatible relaxation , 2004, Numer. Linear Algebra Appl..

[39]  STEVE SCHAFFER,et al.  A Semicoarsening Multigrid Method for Elliptic Partial Differential Equations with Highly Discontinuous and Anisotropic Coefficients , 1998, SIAM J. Sci. Comput..

[40]  A. Brandt General highly accurate algebraic coarsening. , 2000 .

[41]  Y. Notay An aggregation-based algebraic multigrid method , 2010 .

[42]  Thomas A. Manteuffel,et al.  Adaptive Algebraic Multigrid , 2005, SIAM J. Sci. Comput..

[43]  Panayot S. Vassilevski,et al.  On Generalizing the Algebraic Multigrid Framework , 2004, SIAM J. Numer. Anal..

[44]  Ray S. Tuminaro,et al.  A New Petrov--Galerkin Smoothed Aggregation Preconditioner for Nonsymmetric Linear Systems , 2008, SIAM J. Sci. Comput..

[45]  Yvan Notay,et al.  Algebraic analysis of two‐grid methods: The nonsymmetric case , 2010, Numer. Linear Algebra Appl..

[46]  Jinchao Xu,et al.  A two-grid SA-AMG convergence bound that improves when increasing the polynomial degree , 2016, Numer. Linear Algebra Appl..

[47]  Panayot S. Vassilevski,et al.  Adaptive AMG with coarsening based on compatible weighted matching , 2013, Comput. Vis. Sci..

[48]  Achi Brandt,et al.  An algebraic distances measure of AMG strength of connection , 2011, 1106.5990.

[49]  Jacob B. Schroder,et al.  Smoothed aggregation solvers for anisotropic diffusion , 2012, Numer. Linear Algebra Appl..

[50]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.