Parallelism and robustness in GMRES with the Newton basis and the deflated restarting

The GMRES iterative method is widely used as Krylov subspace accelerator for solving sparse linear systems when the coefficient matrix is nonsymmetric and indefinite. The Newton basis implementation has been proposed on distributed memory computers as an alternative to the classical approach with the Arnoldi process. The aim of our work here is to introduce a modification based on deflation techniques. This approach builds an augmented subspace in an adaptive way to accelerate the convergence of the restarted formulation. In our numerical experiments, we show the benefits of using this implementation with hybrid direct/iterative methods to solve large linear systems.

[1]  Atenekeng Kahou,et al.  Parallélisation de GMRES préconditionné par une itération de Schwarz multiplicatif , 2008 .

[2]  Mark Hoemmen,et al.  Communication-avoiding Krylov subspace methods , 2010 .

[3]  Wayne D. Joubert,et al.  Parallelizable restarted iterative methods for nonsymmetric linear systems. II: parallel implementation , 1992 .

[4]  James Demmel,et al.  Communication-optimal Parallel and Sequential QR and LU Factorizations , 2008, SIAM J. Sci. Comput..

[5]  Jocelyne Erhel Some Properties of Krylov Projection Methods for Large Linear Systems , 2011 .

[6]  K. Burrage,et al.  On the Performance of Various Adaptive Preconditioned GMRES Strategies , 1998 .

[7]  Roger B. Sidje,et al.  Parallel Krylov subspace basis computation , 1994 .

[8]  Uentsa,et al.  Parallel GMRES with a multiplicative Schwarz preconditioner , 2011 .

[9]  Laura Grigori,et al.  Combinative preconditioning based on Relaxed Nested Factorization and Tangential Filtering preconditioner , 2009 .

[10]  H. V. D. Vorst,et al.  The superlinear convergence behaviour of GMRES , 1993 .

[11]  Lothar Reichel,et al.  On the generation of Krylov subspace bases , 2012 .

[12]  Jocelyne Erhel,et al.  A parallel GMRES version for general sparse matrices. , 1995 .

[13]  Dianne P. O'Leary,et al.  A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..

[14]  R. B. Sidje Alternatives for parallel Krylov subspace basis computation , 1997 .

[15]  Luc Giraud,et al.  Flexible GMRES with Deflated Restarting , 2010, SIAM J. Sci. Comput..

[16]  Y. Saad,et al.  Deflated and Augmented Krylov Subspace Techniques , 1997 .

[17]  Valeria Simoncini,et al.  Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..

[18]  E. De Sturler Iterative methods on distributed memory computers , 1994 .

[19]  Roger B. Sidje,et al.  Alternatives for parallel Krylov subspace basis computation , 1997, Numer. Linear Algebra Appl..

[20]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[21]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[22]  William Jalby,et al.  Stability Analysis and Improvement of the Block Gram-Schmidt Algorithm , 1991, SIAM J. Sci. Comput..

[23]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[24]  Anthony T. Chronopoulos,et al.  An Efficient Parallel Algorithm for Extreme Eigenvalues of Sparse Nonsymmetric Matrices , 1992, Int. J. High Perform. Comput. Appl..

[25]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[26]  Valeria Simoncini ON A NON-STAGNATION CONDITION FOR GMRES AND APPLICATION TO SADDLE POINT MATRICES ∗ , 2010 .

[27]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[28]  James Demmel,et al.  Minimizing communication in sparse matrix solvers , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[29]  Oliver G. Ernst,et al.  Analysis of acceleration strategies for restarted minimal residual methods , 2000 .

[30]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[31]  S. A. Kharchenko,et al.  Eigenvalue translation based preconditioners for the GMRES(k) method , 1995, Numer. Linear Algebra Appl..

[32]  K. Burrage,et al.  Restarted GMRES preconditioned by deflation , 1996 .

[33]  Jocelyne Erhel,et al.  A comparative study of some distributed linear solvers on systems arising from fluid dynamics simulations , 2009, PARCO.

[34]  L. Reichel,et al.  A Newton basis GMRES implementation , 1994 .

[35]  Rudnei Dias da Cunha,et al.  New Parallel (Rank-Revealing) QR Factorization Algorithms , 2002, Euro-Par.

[36]  Sosonkina Maria,et al.  A New Adaptive GMRES Algorithm for Achieving High Accuracy , 1996 .

[37]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[38]  Ronald B. Morgan,et al.  A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..

[39]  L. Reichel Newton interpolation at Leja points , 1990 .

[40]  Frédéric Nataf,et al.  Low frequency tangential filtering decomposition , 2007, Numer. Linear Algebra Appl..

[41]  Bora Uçar,et al.  A Parallel Matrix Scaling Algorithm , 2008, VECPAR.