Parallelism and robustness in GMRES with the Newton basis and the deflated restarting
暂无分享,去创建一个
[1] Atenekeng Kahou,et al. Parallélisation de GMRES préconditionné par une itération de Schwarz multiplicatif , 2008 .
[2] Mark Hoemmen,et al. Communication-avoiding Krylov subspace methods , 2010 .
[3] Wayne D. Joubert,et al. Parallelizable restarted iterative methods for nonsymmetric linear systems. II: parallel implementation , 1992 .
[4] James Demmel,et al. Communication-optimal Parallel and Sequential QR and LU Factorizations , 2008, SIAM J. Sci. Comput..
[5] Jocelyne Erhel. Some Properties of Krylov Projection Methods for Large Linear Systems , 2011 .
[6] K. Burrage,et al. On the Performance of Various Adaptive Preconditioned GMRES Strategies , 1998 .
[7] Roger B. Sidje,et al. Parallel Krylov subspace basis computation , 1994 .
[8] Uentsa,et al. Parallel GMRES with a multiplicative Schwarz preconditioner , 2011 .
[9] Laura Grigori,et al. Combinative preconditioning based on Relaxed Nested Factorization and Tangential Filtering preconditioner , 2009 .
[10] H. V. D. Vorst,et al. The superlinear convergence behaviour of GMRES , 1993 .
[11] Lothar Reichel,et al. On the generation of Krylov subspace bases , 2012 .
[12] Jocelyne Erhel,et al. A parallel GMRES version for general sparse matrices. , 1995 .
[13] Dianne P. O'Leary,et al. A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..
[14] R. B. Sidje. Alternatives for parallel Krylov subspace basis computation , 1997 .
[15] Luc Giraud,et al. Flexible GMRES with Deflated Restarting , 2010, SIAM J. Sci. Comput..
[16] Y. Saad,et al. Deflated and Augmented Krylov Subspace Techniques , 1997 .
[17] Valeria Simoncini,et al. Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..
[18] E. De Sturler. Iterative methods on distributed memory computers , 1994 .
[19] Roger B. Sidje,et al. Alternatives for parallel Krylov subspace basis computation , 1997, Numer. Linear Algebra Appl..
[20] Patrick Amestoy,et al. A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..
[21] M. Benzi. Preconditioning techniques for large linear systems: a survey , 2002 .
[22] William Jalby,et al. Stability Analysis and Improvement of the Block Gram-Schmidt Algorithm , 1991, SIAM J. Sci. Comput..
[23] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[24] Anthony T. Chronopoulos,et al. An Efficient Parallel Algorithm for Extreme Eigenvalues of Sparse Nonsymmetric Matrices , 1992, Int. J. High Perform. Comput. Appl..
[25] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[26] Valeria Simoncini. ON A NON-STAGNATION CONDITION FOR GMRES AND APPLICATION TO SADDLE POINT MATRICES ∗ , 2010 .
[27] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[28] James Demmel,et al. Minimizing communication in sparse matrix solvers , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.
[29] Oliver G. Ernst,et al. Analysis of acceleration strategies for restarted minimal residual methods , 2000 .
[30] Xiao-Chuan Cai,et al. A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..
[31] S. A. Kharchenko,et al. Eigenvalue translation based preconditioners for the GMRES(k) method , 1995, Numer. Linear Algebra Appl..
[32] K. Burrage,et al. Restarted GMRES preconditioned by deflation , 1996 .
[33] Jocelyne Erhel,et al. A comparative study of some distributed linear solvers on systems arising from fluid dynamics simulations , 2009, PARCO.
[34] L. Reichel,et al. A Newton basis GMRES implementation , 1994 .
[35] Rudnei Dias da Cunha,et al. New Parallel (Rank-Revealing) QR Factorization Algorithms , 2002, Euro-Par.
[36] Sosonkina Maria,et al. A New Adaptive GMRES Algorithm for Achieving High Accuracy , 1996 .
[37] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[38] Ronald B. Morgan,et al. A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..
[39] L. Reichel. Newton interpolation at Leja points , 1990 .
[40] Frédéric Nataf,et al. Low frequency tangential filtering decomposition , 2007, Numer. Linear Algebra Appl..
[41] Bora Uçar,et al. A Parallel Matrix Scaling Algorithm , 2008, VECPAR.