Efficient unitarity randomized benchmarking of few-qubit Clifford gates

Unitarity randomized benchmarking (URB) is an experimental procedure for estimating the coherence of implemented quantum gates independently of state preparation and measurement errors. These estimates of the coherence are measured by the unitarity. A central problem in this experiment is relating the number of data points to rigorous confidence intervals. In this work we provide a bound on the required number of data points for Clifford URB as a function of confidence and experimental parameters. This bound has favorable scaling in the regime of near-unitary noise and is asymptotically independent of the length of the gate sequences used. We also show that, in contrast to standard randomized benchmarking, a nontrivial number of data points is always required to overcome the randomness introduced by state preparation and measurement errors even in the limit of perfect gates. Our bound is sufficiently sharp to benchmark small-dimensional systems in realistic parameter regimes using a modest number of data points. For example, we show that the unitarity of single-qubit Clifford gates can be rigorously estimated using few hundred data points under the assumption of gate-independent noise. This is a reduction of orders of magnitude compared to previously known bounds.

[1]  F. K. Wilhelm,et al.  Complete randomized benchmarking protocol accounting for leakage errors , 2015, 1505.00580.

[2]  Ion Nechita,et al.  A universal set of qubit quantum channels , 2013, 1306.0495.

[3]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[4]  S. Olmschenk,et al.  Randomized benchmarking of atomic qubits in an optical lattice , 2010, 1008.2790.

[5]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[6]  Christopher Ferrie,et al.  Accelerated randomized benchmarking , 2014, 1404.5275.

[7]  Steven T. Flammia,et al.  Randomized benchmarking with confidence , 2014, 1404.6025.

[8]  Luigi Frunzio,et al.  Optimized driving of superconducting artificial atoms for improved single-qubit gates , 2010 .

[9]  Jonas Helsen,et al.  Representations of the multi-qubit Clifford group , 2016, Journal of Mathematical Physics.

[10]  Joseph Emerson,et al.  Robust characterization of leakage errors , 2016 .

[11]  D. Gross,et al.  Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.

[12]  J. P. Dehollain,et al.  Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  Sarah Sheldon,et al.  Characterizing errors on qubit operations via iterative randomized benchmarking , 2015, 1504.06597.

[14]  Raymond Laflamme,et al.  Estimating the Coherence of Noise in Quantum Control of a Solid-State Qubit. , 2016, Physical review letters.

[15]  Joel J. Wallman,et al.  Randomized benchmarking with gate-dependent noise , 2017, 1703.09835.

[16]  Jay M. Gambetta,et al.  Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.

[17]  M Steffen,et al.  Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.

[18]  Daniel Stilck Francca,et al.  Approximate randomized benchmarking for finite groups , 2018, Journal of Physics A: Mathematical and Theoretical.

[19]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[20]  S. Flammia,et al.  Logical Randomized Benchmarking , 2017, 1702.03688.

[21]  Jonas Helsen,et al.  Multiqubit randomized benchmarking using few samples , 2017, Physical Review A.

[22]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[23]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[24]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[25]  Joel J. Wallman Bounding experimental quantum error rates relative to fault-tolerant thresholds , 2015 .

[26]  Arnaud Carignan-Dugas,et al.  Characterizing universal gate sets via dihedral benchmarking , 2015, 1508.06312.

[27]  E Knill,et al.  Randomized benchmarking of multiqubit gates. , 2012, Physical review letters.

[28]  Jonas Helsen,et al.  A new class of efficient randomized benchmarking protocols , 2018, npj Quantum Information.

[29]  M Saffman,et al.  Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits. , 2015, Physical review letters.

[30]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[31]  Charles R. Johnson,et al.  Matrix Analysis, 2nd Ed , 2012 .

[32]  Charalambos D. Aliprantis,et al.  Principles of Real Analysis , 1981 .

[33]  Andrew W. Cross,et al.  Investigating the limits of randomized benchmarking protocols , 2013, 1308.2928.

[34]  Huangjun Zhu Multiqubit Clifford groups are unitary 3-designs , 2015, 1510.02619.

[35]  Kenneth Rudinger,et al.  What Randomized Benchmarking Actually Measures. , 2017, Physical review letters.

[36]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[37]  W. Marsden I and J , 2012 .

[38]  Andrew W. Cross,et al.  Scalable randomised benchmarking of non-Clifford gates , 2015, npj Quantum Information.

[39]  Christoph Dankert,et al.  Exact and Approximate Unitary 2-Designs: Constructions and Applications , 2006, quant-ph/0606161.

[40]  Steven T. Flammia,et al.  Estimating the coherence of noise , 2015, 1503.07865.

[41]  David G. Cory,et al.  Bayesian Inference for Randomized Benchmarking Protocols , 2018, 1802.00401.

[42]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[43]  David Elkouss,et al.  Practical and reliable error bars for quantum process tomography , 2019, Physical Review A.

[44]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[45]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[46]  J. M. Farinholt,et al.  An ideal characterization of the Clifford operators , 2013, 1307.5087.

[47]  Bryan Eastin,et al.  Randomized benchmarking with restricted gate sets , 2018, Physical Review A.

[48]  Joel J. Wallman,et al.  Bounding quantum gate error rate based on reported average fidelity , 2015, 1501.04932.

[49]  Markus Grassl,et al.  The Clifford group fails gracefully to be a unitary 4-design , 2016, 1609.08172.

[50]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[51]  Richard Kueng,et al.  Comparing Experiments to the Fault-Tolerance Threshold. , 2015, Physical review letters.

[52]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[53]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[54]  D. Petz,et al.  Contractivity of positive and trace-preserving maps under Lp norms , 2006, math-ph/0601063.

[55]  Joel J. Wallman,et al.  Robust Characterization of Loss Rates. , 2015, Physical review letters.

[56]  Joel J. Wallman,et al.  Real Randomized Benchmarking , 2018, Quantum.