RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti

[1]  Robert M. Waterhouse,et al.  Evolutionary Dynamics of Immune-Related Genes and Pathways in Disease-Vector Mosquitoes , 2007, Science.

[2]  J. Derisi,et al.  HMMSplicer: A Tool for Efficient and Sensitive Discovery of Known and Novel Splice Junctions in RNA-Seq Data , 2010, PloS one.

[3]  A. James,et al.  Molecular genetic manipulation of vector mosquitoes. , 2008, Cell host & microbe.

[4]  T. Monath Dengue and yellow fever--challenges for the development and use of vaccines. , 2007, The New England journal of medicine.

[5]  T. S. Adams Hematophagy and Hormone Release , 1999 .

[6]  D. Gubler,et al.  Vector-borne diseases. , 2009, Revue scientifique et technique.

[7]  J. Reichhart,et al.  Toll-dependent antimicrobial responses in Drosophila larval fat body require Spätzle secreted by haemocytes , 2009, Journal of Cell Science.

[8]  Evgeny M. Zdobnov,et al.  OrthoDB: the hierarchical catalog of eukaryotic orthologs , 2007, Nucleic Acids Res..

[9]  M. Stephens,et al.  RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. , 2008, Genome research.

[10]  Evgeny M Zdobnov,et al.  Pathogenomics of Culex quinquefasciatus and Meta-Analysis of Infection Responses to Diverse Pathogens , 2010, Science.

[11]  Y. Ip,et al.  Multimerization and interaction of Toll and Spätzle in Drosophila. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. Ghosh,et al.  Identification and characterization of a novel peritrophic matrix protein, Ae-Aper50, and the microvillar membrane protein, AEG12, from the mosquito, Aedes aegypti. , 2005, Insect biochemistry and molecular biology.

[13]  C. Lowenberger Innate immune response of Aedes aegypti. , 2001, Insect biochemistry and molecular biology.

[14]  Evgeny M. Zdobnov,et al.  Genome Sequence of Aedes aegypti, a Major Arbovirus Vector , 2007, Science.

[15]  G. Mayhew,et al.  Mosquito Infection Responses to Developing Filarial Worms , 2009, PLoS neglected tropical diseases.

[16]  M. Marra,et al.  Applications of next-generation sequencing technologies in functional genomics. , 2008, Genomics.

[17]  J. H. Oliveira,et al.  Blood-Feeding Induces Reversible Functional Changes in Flight Muscle Mitochondria of Aedes aegypti Mosquito , 2009, PloS one.

[18]  G. Dimopoulos,et al.  Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites , 2009, PLoS pathogens.

[19]  T. P. Neufeld,et al.  Autophagy takes flight in Drosophila , 2010, FEBS letters.

[20]  J. Ribeiro,et al.  Blood-feeding arthropods: live syringes or invertebrate pharmacologists? , 1995, Infectious agents and disease.

[21]  M. Guzmán,et al.  The epidemiology of dengue in the americas over the last three decades: a worrisome reality. , 2010, The American journal of tropical medicine and hygiene.

[22]  Maureen Hillenmeyer,et al.  Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae , 2005, BMC Genomics.

[23]  W. Macdonald FURTHER STUDIES ON A STRAIN OF AEDES AEGYPTI SUSCEPTIBLE TO INFECTION WITH SUB-PERIODIC BRUGIA MALAYI. , 1963, Annals of tropical medicine and parasitology.

[24]  D. Heckel,et al.  Evolutionary origins of a novel host plant detoxification gene in butterflies. , 2008, Molecular biology and evolution.

[25]  B. Foy,et al.  Expression profiling and comparative analyses of seven midgut serine proteases from the yellow fever mosquito, Aedes aegypti. , 2010, Journal of insect physiology.

[26]  A. James,et al.  Comparative fitness assessment of Anopheles stephensi transgenic lines receptive to site‐specific integration , 2010, Insect molecular biology.

[27]  S. Grimmond,et al.  Transcriptome content and dynamics at single-nucleotide resolution , 2008, Genome Biology.

[28]  Thomas D. Schmittgen,et al.  Analyzing real-time PCR data by the comparative CT method , 2008, Nature Protocols.

[29]  Gregory R. Madey,et al.  VectorBase: a data resource for invertebrate vector genomics , 2008, Nucleic Acids Res..

[30]  T. Schüpbach,et al.  zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. , 2007, Developmental cell.

[31]  B. Yuval Mating systems of blood-feeding flies. , 2006, Annual review of entomology.

[32]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[33]  I. Sánchez-Vargas,et al.  Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes , 2007, BMC Microbiology.

[34]  A. James,et al.  Genome‐wide analysis of gene expression in adult Anopheles gambiae , 2006, Insect molecular biology.

[35]  S. Quake,et al.  Single-Molecule DNA Sequencing of a Viral Genome , 2008, Science.

[36]  A. Barrett,et al.  Review on flavivirus vaccine development. Proceedings of a meeting jointly organised by the World Health Organization and the Thai Ministry of Public Health, 26-27 April 2004, Bangkok, Thailand. , 2005, Vaccine.

[37]  I. Sánchez-Vargas,et al.  The RNA interference pathway affects midgut infection- and escape barriers for Sindbis virus in Aedes aegypti , 2010, BMC Microbiology.

[38]  Zhiyong Xi,et al.  The Aedes aegypti Toll Pathway Controls Dengue Virus Infection , 2008, PLoS pathogens.

[39]  S. Gill,et al.  Characterization of a blood-meal-responsive proton-dependent amino acid transporter in the disease vector, Aedes aegypti , 2009, Journal of Experimental Biology.

[40]  Jeffrey G. Reifenberger,et al.  Direct RNA sequencing , 2009, Nature.

[41]  B. Foy,et al.  Aedes aegypti uses RNA interference in defense against Sindbis virus infection , 2008 .

[42]  Michael P. Snyder,et al.  RNA‐Seq: A Method for Comprehensive Transcriptome Analysis , 2010, Current protocols in molecular biology.

[43]  A. Roulin,et al.  What Makes a Host Profitable? Parasites Balance Host Nutritive Resources against Immunity , 2007, The American Naturalist.

[44]  A. di Caro,et al.  Recent expansion of dengue virus serotype 3 in West Africa. , 2010, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[45]  B. Wilhelm,et al.  RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. , 2009, Methods.

[46]  Karyn Megy,et al.  Comparative genomics allows the discovery of cis-regulatory elements in mosquitoes , 2009, Proceedings of the National Academy of Sciences.

[47]  Steven J. M. Jones,et al.  De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data , 2009, Genome Biology.

[48]  J. Farfán-Ale,et al.  Flavivirus susceptibility in Aedes aegypti. , 2002, Archives of medical research.

[49]  Robert H. Gross,et al.  SCOPE: a web server for practical de novo motif discovery , 2007, Nucleic Acids Res..

[50]  C. Rice,et al.  Dengue Virus Type 2 Infections of Aedes aegypti Are Modulated by the Mosquito's RNA Interference Pathway , 2009, PLoS pathogens.

[51]  L. S. Ross,et al.  Blood meal induces global changes in midgut gene expression in the disease vector, Aedes aegypti. , 2003, Insect biochemistry and molecular biology.

[52]  B. Foy,et al.  Comparative genomics of small RNA regulatory pathway components in vector mosquitoes , 2008, BMC Genomics.

[53]  Xuegong Zhang,et al.  DEGseq: an R package for identifying differentially expressed genes from RNA-seq data , 2010, Bioinform..

[54]  J. Ramirez,et al.  The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes. , 2010, Developmental and comparative immunology.

[55]  D. Severson,et al.  A targeted approach to the identification of candidate genes determining susceptibility to Plasmodium gallinaceum in Aedes aegypti , 2003, Molecular Genetics and Genomics.

[56]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[57]  S. Higgs,et al.  Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. , 2002, The American journal of tropical medicine and hygiene.

[58]  A. Raikhel,et al.  Distinct melanization pathways in the mosquito Aedes aegypti. , 2010, Immunity.

[59]  J. Krzywinski,et al.  Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. , 2006, Molecular phylogenetics and evolution.

[60]  D. Gubler,et al.  Resurgent vector-borne diseases as a global health problem. , 1998, Emerging infectious diseases.

[61]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[62]  T. Monath,et al.  Dengue: the risk to developed and developing countries. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[63]  E. Mardis Next-generation DNA sequencing methods. , 2008, Annual review of genomics and human genetics.

[64]  G. Jaramillo-Gutierrez,et al.  Reactive Oxygen Species Modulate Anopheles gambiae Immunity against Bacteria and Plasmodium* , 2008, Journal of Biological Chemistry.

[65]  B. M. Christensen,et al.  Reassessing the role of defensin in the innate immune response of the mosquito, Aedes aegypti , 2004, Insect molecular biology.

[66]  L. Alphey,et al.  Mosquito transgenesis: what is the fitness cost? , 2006, Trends in parasitology.

[67]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[68]  Philip Lijnzaad,et al.  The Ensembl genome database project , 2002, Nucleic Acids Res..