Reversible Multi-head Finite Automata Characterize Reversible Logarithmic Space

Deterministic and non-deterministic multi-head finite automata are known to characterize the deterministic and non- deterministic logarithmic space complexity classes, respectively. Recently, Morita introduced reversible multi-head finite automata (RMFAs), and posed the question of whether RMFAs characterize reversible logarithmic space as well. Here, we resolve the question affirmatively, by exhibiting a clean RMFA simulation of logarithmic space reversible Turing machines. Indirectly, this also proves that reversible and deterministic multi-head finite automata recognize the same languages.

[1]  Robert Glück,et al.  What Do Reversible Programs Compute? , 2011, FoSSaCS.

[2]  Martin Kutrib,et al.  Multi-Head Finite Automata: Characterizations, Concepts and Open Problems , 2009, CSP.

[3]  Martin Kutrib,et al.  Reversible pushdown automata , 2012, J. Comput. Syst. Sci..

[4]  Oscar H. Ibarra,et al.  On Two-way Multihead Automata , 1973, J. Comput. Syst. Sci..

[5]  Kenichi Morita,et al.  Two-Way Reversible Multi-Head Finite Automata , 2011, Fundam. Informaticae.

[6]  Holger Bock Axelsen Time Complexity of Tape Reduction for Reversible Turing Machines , 2011, RC.

[7]  Juris Hartmanis On non-determinancy in simple computing devices , 2004, Acta Informatica.

[8]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[9]  Ian Stark,et al.  Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.

[10]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[11]  Wojciech Rytter,et al.  On the Maximal Number of Cubic Runs in a String , 2010, LATA.

[12]  Robert Glück,et al.  Reversible Flowchart Languages and the Structured Reversible Program Theorem , 2008, ICALP.

[13]  Jean-Éric Pin On the Language Accepted by Finite Reversible Automata , 1987, ICALP.

[14]  Peter Leupold,et al.  Computing by observing: Simple systems and simple observers , 2011, Theor. Comput. Sci..

[15]  Pierre McKenzie,et al.  Reversible Space Equals Deterministic Space , 2000, J. Comput. Syst. Sci..

[16]  Kenichi Morita,et al.  A 1-Tape 2-Symbol Reversible Turing Machine , 1989 .

[17]  Robert Glück,et al.  A Simple and Efficient Universal Reversible Turing Machine , 2011, LATA.