Reversible Multi-head Finite Automata Characterize Reversible Logarithmic Space
暂无分享,去创建一个
[1] Robert Glück,et al. What Do Reversible Programs Compute? , 2011, FoSSaCS.
[2] Martin Kutrib,et al. Multi-Head Finite Automata: Characterizations, Concepts and Open Problems , 2009, CSP.
[3] Martin Kutrib,et al. Reversible pushdown automata , 2012, J. Comput. Syst. Sci..
[4] Oscar H. Ibarra,et al. On Two-way Multihead Automata , 1973, J. Comput. Syst. Sci..
[5] Kenichi Morita,et al. Two-Way Reversible Multi-Head Finite Automata , 2011, Fundam. Informaticae.
[6] Holger Bock Axelsen. Time Complexity of Tape Reduction for Reversible Turing Machines , 2011, RC.
[7] Juris Hartmanis. On non-determinancy in simple computing devices , 2004, Acta Informatica.
[8] Charles H. Bennett,et al. Logical reversibility of computation , 1973 .
[9] Ian Stark,et al. Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.
[10] Robin Milner,et al. On Observing Nondeterminism and Concurrency , 1980, ICALP.
[11] Wojciech Rytter,et al. On the Maximal Number of Cubic Runs in a String , 2010, LATA.
[12] Robert Glück,et al. Reversible Flowchart Languages and the Structured Reversible Program Theorem , 2008, ICALP.
[13] Jean-Éric Pin. On the Language Accepted by Finite Reversible Automata , 1987, ICALP.
[14] Peter Leupold,et al. Computing by observing: Simple systems and simple observers , 2011, Theor. Comput. Sci..
[15] Pierre McKenzie,et al. Reversible Space Equals Deterministic Space , 2000, J. Comput. Syst. Sci..
[16] Kenichi Morita,et al. A 1-Tape 2-Symbol Reversible Turing Machine , 1989 .
[17] Robert Glück,et al. A Simple and Efficient Universal Reversible Turing Machine , 2011, LATA.