Reduced basis hybrid computational homogenization based on a mixed incremental formulation
暂无分享,去创建一个
[1] Pierre Suquet,et al. Computational analysis of nonlinear composite structures using the Nonuniform Transformation Field Analysis , 2004 .
[2] Sonia Marfia,et al. A nonuniform TFA homogenization technique based on piecewise interpolation functions of the inelastic field , 2013 .
[3] Christian Miehe,et al. Strain‐driven homogenization of inelastic microstructures and composites based on an incremental variational formulation , 2002 .
[4] M. Ortiz,et al. The variational formulation of viscoplastic constitutive updates , 1999 .
[5] A. Reuss,et al. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .
[6] Pedro Ponte Castañeda. Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I—theory , 2002 .
[7] S. Shtrikman,et al. A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .
[8] J. Michel,et al. Nonuniform transformation field analysis , 2003 .
[9] B. Schrefler,et al. Multiscale Methods for Composites: A Review , 2009 .
[10] Thomas Böhlke,et al. Computational homogenization of elasto-plastic porous metals , 2012 .
[11] Pierre Suquet,et al. Nonuniform transformation field analysis of elastic–viscoplastic composites , 2009 .
[12] S. Torquato. Random Heterogeneous Materials , 2002 .
[13] George J. Dvorak,et al. The modeling of inelastic composite materials with the transformation field analysis , 1994 .
[14] Christian Miehe,et al. A multi-field incremental variational framework for gradient-extended standard dissipative solids , 2011 .
[15] Frédéric Feyel,et al. Multiscale FE2 elastoviscoplastic analysis of composite structures , 1999 .
[16] David Ryckelynck,et al. Multi-level A Priori Hyper-Reduction of mechanical models involving internal variables , 2010 .
[17] G. J. Dvorak,et al. Implementation of the transformation field analysis for inelastic composite materials , 1994 .
[18] P. Ladevèze,et al. The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .
[19] Felix Fritzen,et al. Microstructural Modeling and Computational Homogenization of the Physically Linear and Nonlinear Constitutive Behavior of Micro-Heterogeneous Materials , 2012 .
[20] K. Danas,et al. Numerical modeling of elasto-plastic porous materials with void shape effects at finite deformations , 2012 .
[21] Thomas Böhlke,et al. Nonuniform transformation field analysis of materials with morphological anisotropy , 2011 .
[22] C. O. Frederick,et al. A mathematical representation of the multiaxial Bauschinger effect , 2007 .
[23] W. Voigt,et al. Lehrbuch der Kristallphysik , 1966 .
[24] Quoc Son Nguyen,et al. Sur les matériaux standard généralisés , 1975 .
[25] Y. Benveniste,et al. On transformation strains and uniform fields in multiphase elastic media , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[26] Pierre Suquet,et al. Effective behavior of linear viscoelastic composites: A time-integration approach , 2007 .
[27] J. Willis. Bounds and self-consistent estimates for the overall properties of anisotropic composites , 1977 .
[28] J. Michel,et al. NONUNIFORM TRANSFORMATION FIELD ANALYSIS: A REDUCED MODEL FOR MULTISCALE NONLINEAR PROBLEMS IN SOLID MECHANICS , 2009 .
[29] Thomas Böhlke,et al. Reduced basis homogenization of viscoelastic composites , 2013 .
[30] Thomas Böhlke,et al. Three‐dimensional finite element implementation of the nonuniform transformation field analysis , 2010 .
[31] S. Nemat-Nasser,et al. Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .