Reduced basis hybrid computational homogenization based on a mixed incremental formulation

A new reduced basis method for the computer assisted homogenization of microheterogeneous materials is proposed. Key features of the Nonuniform Transformation Field Analysis (NTFA) [1,2] are taken as a point of departure. A short-coming of the NTFA method is its limitation to simple constitutive models on the microscale. A second disadvantage is the possible loss of accuracy when the reduced basis approximating the plastic strains has increasing dimension. Both issues are related to the simple evolution law for the mode activity coefficients, which are the new macroscopic internal variables of the homogenized material. In the present contribution a generalization of the NTFA is proposed in which the evolution of the new internal variables is derived from a mixed incremental variational formulation. The derivation is based on purely micro-mechanical considerations. The modification allows for arbitrary Generalized Standard Materials [3] on the microscopic scale including, e.g., crystal visco-plasticity. Additionally, the fidelity of the homogenized response is now directly linked to the reduced basis approximating the plastic strain field. Numerical examples for nonlinear viscous materials and single crystal plasticity outline the accuracy of the proposed multi-scale method.

[1]  Pierre Suquet,et al.  Computational analysis of nonlinear composite structures using the Nonuniform Transformation Field Analysis , 2004 .

[2]  Sonia Marfia,et al.  A nonuniform TFA homogenization technique based on piecewise interpolation functions of the inelastic field , 2013 .

[3]  Christian Miehe,et al.  Strain‐driven homogenization of inelastic microstructures and composites based on an incremental variational formulation , 2002 .

[4]  M. Ortiz,et al.  The variational formulation of viscoplastic constitutive updates , 1999 .

[5]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[6]  Pedro Ponte Castañeda Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I—theory , 2002 .

[7]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[8]  J. Michel,et al.  Nonuniform transformation field analysis , 2003 .

[9]  B. Schrefler,et al.  Multiscale Methods for Composites: A Review , 2009 .

[10]  Thomas Böhlke,et al.  Computational homogenization of elasto-plastic porous metals , 2012 .

[11]  Pierre Suquet,et al.  Nonuniform transformation field analysis of elastic–viscoplastic composites , 2009 .

[12]  S. Torquato Random Heterogeneous Materials , 2002 .

[13]  George J. Dvorak,et al.  The modeling of inelastic composite materials with the transformation field analysis , 1994 .

[14]  Christian Miehe,et al.  A multi-field incremental variational framework for gradient-extended standard dissipative solids , 2011 .

[15]  Frédéric Feyel,et al.  Multiscale FE2 elastoviscoplastic analysis of composite structures , 1999 .

[16]  David Ryckelynck,et al.  Multi-level A Priori Hyper-Reduction of mechanical models involving internal variables , 2010 .

[17]  G. J. Dvorak,et al.  Implementation of the transformation field analysis for inelastic composite materials , 1994 .

[18]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[19]  Felix Fritzen,et al.  Microstructural Modeling and Computational Homogenization of the Physically Linear and Nonlinear Constitutive Behavior of Micro-Heterogeneous Materials , 2012 .

[20]  K. Danas,et al.  Numerical modeling of elasto-plastic porous materials with void shape effects at finite deformations , 2012 .

[21]  Thomas Böhlke,et al.  Nonuniform transformation field analysis of materials with morphological anisotropy , 2011 .

[22]  C. O. Frederick,et al.  A mathematical representation of the multiaxial Bauschinger effect , 2007 .

[23]  W. Voigt,et al.  Lehrbuch der Kristallphysik , 1966 .

[24]  Quoc Son Nguyen,et al.  Sur les matériaux standard généralisés , 1975 .

[25]  Y. Benveniste,et al.  On transformation strains and uniform fields in multiphase elastic media , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[26]  Pierre Suquet,et al.  Effective behavior of linear viscoelastic composites: A time-integration approach , 2007 .

[27]  J. Willis Bounds and self-consistent estimates for the overall properties of anisotropic composites , 1977 .

[28]  J. Michel,et al.  NONUNIFORM TRANSFORMATION FIELD ANALYSIS: A REDUCED MODEL FOR MULTISCALE NONLINEAR PROBLEMS IN SOLID MECHANICS , 2009 .

[29]  Thomas Böhlke,et al.  Reduced basis homogenization of viscoelastic composites , 2013 .

[30]  Thomas Böhlke,et al.  Three‐dimensional finite element implementation of the nonuniform transformation field analysis , 2010 .

[31]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .