Quantum principal component analysis

Characterizing an unknown quantum state typically relies on analysing the outcome of a large set of measurements. Certain quantum-processing tasks are now shown to be realizable using only approximate knowledge of the state, which can be gathered with exponentially fewer resources.

[1]  C. Helstrom Quantum detection and estimation theory , 1969 .

[2]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[3]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[4]  R. Werner,et al.  Estimating the spectrum of a density operator , 2001, quant-ph/0102027.

[5]  Amnon Ta-Shma,et al.  Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.

[6]  M. Keyl QUANTUM STATE ESTIMATION AND LARGE DEVIATIONS , 2004 .

[7]  D. Bacon,et al.  Efficient quantum circuits for Schur and Clebsch-Gordan transforms. , 2004, Physical review letters.

[8]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[9]  Per-Gunnar Martinsson,et al.  Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.

[10]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[11]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[12]  P. Høyer,et al.  Higher order decompositions of ordered operator exponentials , 2008, 0812.0562.

[13]  Daniel A. Lidar,et al.  Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.

[14]  S. Lloyd,et al.  Architectures for a quantum random access memory , 2008, 0807.4994.

[15]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[16]  S. Lloyd,et al.  Experimental quantum private queries with linear optics , 2009 .

[17]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[18]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[19]  Barry C. Sanders,et al.  Simulating quantum dynamics on a quantum computer , 2010, 1011.3489.

[20]  Yi-Kai Liu,et al.  Universal low-rank matrix recovery from Pauli measurements , 2011, NIPS.

[21]  Masoud Mohseni,et al.  Estimation of many-body quantum Hamiltonians via compressive sensing , 2011 .

[22]  R. Kosut,et al.  Efficient measurement of quantum dynamics via compressive sensing. , 2009, Physical review letters.

[23]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[24]  Steven T. Flammia,et al.  Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators , 2012, 1205.2300.

[25]  Universal implementation of projective measurement of energy , 2013 .

[26]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[27]  vCaslav Brukner,et al.  Quantum circuits cannot control unknown operations , 2013, 1309.7976.

[28]  Masoud Mohseni,et al.  Quantum support vector machine for big feature and big data classification , 2013, Physical review letters.