Conditional generative adversarial network for generation of three-dimensional porous structure of solid oxide fuel cell anodes with controlled volume fractions

[1]  M. Kishimoto,et al.  Effect of Total Pressure Difference on Counter Transport of Gases with Different Molecular Weights Through Solid Oxide Fuel Cell Anode , 2022, SSRN Electronic Journal.

[2]  O. Genç,et al.  Synthetical designing of solid oxide fuel cell electrodes: Effect of particle size and volume fraction , 2022, International Journal of Hydrogen Energy.

[3]  Yosuke Komatsu,et al.  Unsupervised Generative Adversarial Network for 3-D Microstructure Synthesis from 2-D Image , 2021, ECS Meeting Abstracts.

[4]  Habip Gökay Korkmaz,et al.  Engineering solid oxide fuel cell electrode microstructure by a micro-modeling tool based on estimation of TPB length , 2021 .

[5]  Ian Goodfellow,et al.  Generative adversarial networks , 2020, Commun. ACM.

[6]  N. Brandon,et al.  Pores for thought: generative adversarial networks for stochastic reconstruction of 3D multi-phase electrode microstructures with periodic boundaries , 2020, npj Computational Materials.

[7]  Elizabeth A. Holm,et al.  Microstructure Generation via Generative Adversarial Network for Heterogeneous, Topologically Complex 3D Materials , 2020, JOM.

[8]  Joseph B. Choi,et al.  Deep learning for synthetic microstructure generation in a materials-by-design framework for heterogeneous energetic materials , 2020, Scientific Reports.

[9]  N. Shikazono,et al.  Modeling of solid oxide fuel cell (SOFC) electrodes from fabrication to operation: Microstructure optimization via artificial neural networks and multi-objective genetic algorithms , 2019, Energy Conversion and Management.

[10]  H. Iwai,et al.  Physicochemical impedance modeling of solid oxide fuel cell anode as an alternative tool for equivalent circuit fitting , 2019, Journal of Power Sources.

[11]  N. Shikazono,et al.  Prediction of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 cathode microstructures during sintering: Kinetic Monte Carlo (KMC) simulations calibrated by artificial neural networks , 2017 .

[12]  Nigel P. Brandon,et al.  TauFactor: An open-source application for calculating tortuosity factors from tomographic data , 2016, SoftwareX.

[13]  N. Brandon,et al.  Numerical modeling of nickel-infiltrated gadolinium-doped ceria electrodes reconstructed with focused ion beam tomography , 2016 .

[14]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[15]  Ellen Ivers-Tiffée,et al.  3D finite element model for reconstructed mixed-conducting cathodes: I. Performance quantification , 2012 .

[16]  E. Ivers-Tiffée,et al.  3D finite element model for reconstructed mixed-conducting cathodes: II. Parameter sensitivity analysis , 2012 .

[17]  P. Bleuet,et al.  Characterisation of Solid Oxide Fuel Cell Ni–8YSZ substrate by synchrotron X-ray nano-tomography: from 3D reconstruction to microstructure quantification , 2012 .

[18]  A. Bertei,et al.  Percolation theory in SOFC composite electrodes: Effects of porosity and particle size distribution , 2011 .

[19]  Nigel P. Brandon,et al.  Using Synchrotron X-Ray Nano-CT to Characterize SOFC Electrode Microstructures in Three-Dimensions at Operating Temperature , 2011 .

[20]  Hiroshi Iwai,et al.  Quantitative evaluation of solid oxide fuel cell porous anode microstructure based on focused ion be , 2011 .

[21]  N. Shikazono,et al.  Three-dimensional numerical analysis of mixed ionic and electronic conducting cathode reconstructed by focused ion beam scanning electron microscope , 2011 .

[22]  F. Chen,et al.  Random-packing model for solid oxide fuel cell electrodes with particle size distributions , 2011 .

[23]  Robert J. Kee,et al.  A particle-based model for predicting the effective conductivities of composite electrodes , 2010 .

[24]  Nobuhide Kasagi,et al.  Numerical Assessment of SOFC Anode Polarization Based on Three-Dimensional Model Microstructure Reconstructed from FIB-SEM Images , 2010 .

[25]  Hiroshi Iwai,et al.  Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique , 2010 .

[26]  Robert J. Kee,et al.  Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes , 2009 .

[27]  Jon G. Pharoah,et al.  Computation of TPB length, surface area and pore size from numerical reconstruction of composite solid oxide fuel cell electrodes , 2009 .

[28]  Nobuhide Kasagi,et al.  Micro modeling of solid oxide fuel cell anode based on stochastic reconstruction , 2008 .

[29]  Nigel P. Brandon,et al.  Microstructural Modeling of Solid Oxide Fuel Cell Anodes , 2008 .

[30]  R. Kee,et al.  Modeling Distributed Charge-Transfer Processes in SOFC Membrane Electrode Assemblies , 2008 .

[31]  Wilson K. S. Chiu,et al.  Nondestructive Reconstruction and Analysis of SOFC Anodes Using X-ray Computed Tomography at Sub-50 nm Resolution , 2008 .

[32]  Dennis Y.C. Leung,et al.  Micro-scale modeling of a functionally graded Ni-YSZ anode , 2007 .

[33]  Yann Bultel,et al.  Percolation effects in functionally graded SOFC electrodes , 2007 .

[34]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[35]  D. Jeon,et al.  A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells , 2006 .

[36]  Jin Hyun Nam,et al.  Microstructural Optimization of Anode-Supported Solid Oxide Fuel Cells by a Comprehensive Microscale Model , 2006 .

[37]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[38]  M. Ni,et al.  Reconstruction of solid oxide fuel cell electrode microstructure and analysis of its effective conductivity , 2016 .

[39]  A. Atkinson,et al.  Modeling Microstructure Evolution of Ni Cermet Using a Cellular Automaton Approach , 2014 .

[40]  H. Iwai,et al.  Three-Dimensional Simulation of SOFC Anode Polarization Characteristics Based on Sub-Grid Scale Modeling of Microstructure , 2012 .

[41]  Xin Sun,et al.  Three-phase solid oxide fuel cell anode microstructure realization using two-point correlation functions , 2011 .

[42]  V. Antonucci,et al.  Micro-modelling of solid oxide fuel cell electrodes , 1998 .