Limit theorems for skew products with mixing base maps and expanding on the average fibers without fiberwise centering

In this paper we show how to apply classical probabilistic tools for globally centered partial sums ∑n−1 j=0 φ ◦ τ n generated by skew product τ , built over a sufficiently well mixing base map and a random expanding dynamical system. Under certain regularity assumptions on the observable φ, we obtain a central limit theorem (CLT) with rates, a functional CLT, an almost sure invariance principle (ASIP), a moderate deviations principle, several exponential concentration inequalities and Rosenthal type moment estimates for skew products with α, φ or ψ mixing base maps and expanding on the average random fiber maps. All of the results are new even in the uniformly expanding case. The main novelty here is that the random maps are not independent (contrary to [3]) and that the underlying observable is not fiberwise centered (contrary to [29]). For stretched exponentially α-mixing base maps our proofs are based on multiple correlation estimates, which make the classical method of cumulants applicable. For φ or φ mixing base maps, we obtain an ASIP and moments and concentration inequalities by establishing an L convergence of the iterates K of a certain“transfer” operator K with respect to a certain sub-σ-algebra, which yields an appropriate (reverse) martingale-coboundary decomposition.

[1]  W. Philipp,et al.  Almost sure invariance principles for partial sums of weakly dependent random variables , 1975 .

[2]  R. Aimino,et al.  On the quenched central limit theorem for random dynamical systems , 2016 .

[3]  Ian Melbourne,et al.  Smooth approximation of stochastic differential equations , 2014, 1403.7281.

[4]  V. Araújo Random Dynamical Systems , 2006, math/0608162.

[5]  Magda Peligrad,et al.  Recent advances in invariance principles for stationary sequences , 2006, math/0601315.

[6]  G. Froyland,et al.  A Spectral Approach for Quenched Limit Theorems for Random Expanding Dynamical Systems , 2017, 1705.02130.

[7]  Mikko Stenlund,et al.  A coupling approach to random circle maps expanding on the average , 2013, 1306.2942.

[8]  I. Melbourne,et al.  Martingale–coboundary decomposition for families of dynamical systems , 2016, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[9]  L. Hervé,et al.  Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness , 2001 .

[10]  Davor Dragicevic,et al.  Almost Sure Invariance Principle for Random Distance Expanding Maps with a Nonuniform Decay of Correlations , 2021, Lecture Notes in Mathematics.

[11]  S. Varadhan,et al.  Nonconventional limit theorems in discrete and continuous time via martingales , 2010, 1012.2223.

[12]  Hiroshi Ishitani Central Limit Theorems for The Random Iterations of 1-dimensional Transformations (Dynamics of Complex Systems) , 2004 .

[13]  E. Rio,et al.  Théorie asymptotique de processus aléatoires faiblement dépendants , 2000 .

[14]  S. V. Nagaev More Exact Statement of Limit Theorems for Homogeneous Markov Chains , 1961 .

[15]  Berry–Esseen type estimates for nonconventional sums , 2015, 1503.07558.

[16]  Yuri Kifer,et al.  Perron-Frobenius theorem, large deviations, and random perturbations in random environments , 1996 .

[17]  Davor Dragivcevi'c,et al.  Quenched limit theorems for expanding on average cocycles , 2021 .

[18]  Y. Kifer Limit theorems for random transformations and processes in random environments , 1998 .

[19]  I. Ibragimov,et al.  Independent and stationary sequences of random variables , 1971 .

[20]  Mariusz Urba'nski,et al.  Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry , 2008, 0805.4580.

[21]  M. Denker,et al.  LOCAL LIMIT THEOREMS FOR GIBBS-MARKOV MAPS , 2007 .

[22]  G. Froyland,et al.  Almost sure invariance principle for random piecewise expanding maps , 2016, 1611.04003.

[23]  S. Gouëzel,et al.  ALMOST SURE INVARIANCE PRINCIPLE FOR DYNAMICAL SYSTEMS BY SPECTRAL METHODS , 2009, 0907.1404.

[24]  P. Eichelsbacher,et al.  Moderate Deviations via Cumulants , 2010, 1012.5027.

[25]  Jacques Rousseau-Egele,et al.  Un Theoreme de la Limite Locale Pour une Classe de Transformations Dilatantes et Monotones par Morceaux , 1983 .

[26]  Wael Bahsoun,et al.  Almost sure rates of mixing for partially hyperbolic attractors , 2019, Journal of Differential Equations.

[27]  Lai-Sang Young,et al.  On the spectra of randomly perturbed expanding maps , 1993 .

[28]  Y. Hafouta,et al.  Almost sure invariance principle for random dynamical systems via Gouëzel's approach , 2019, Nonlinearity.

[29]  S. V. Nagaev Some Limit Theorems for Stationary Markov Chains , 1957 .

[30]  A Vector-Valued Almost Sure Invariance Principle for Sinai Billiards with Random Scatterers , 2012, 1210.0902.

[31]  L. Saulis,et al.  Limit theorems for large deviations , 1991 .

[32]  S. Vaienti,et al.  Annealed and quenched limit theorems for random expanding dynamical systems , 2013, 1310.4359.

[33]  J. Buzzi Exponential Decay of Correlations for Random Lasota–Yorke Maps , 1999 .

[34]  F. Merlevède,et al.  Strong Invariance Principles with Rate for “Reverse” Martingale Differences and Applications , 2015 .

[35]  THERMODYNAMIC FORMALISM FOR RANDOM TRANSFORMATIONS REVISITED , 2008 .

[36]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[37]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[38]  A. Török,et al.  Almost sure invariance principle for sequential and non-stationary dynamical systems , 2014, 1406.4266.

[39]  Davor Dragivcevi'c,et al.  A vector-valued almost sure invariance principle for random expanding on average cocycles , 2021 .

[40]  Y. Kifer Nonconventional limit theorems , 2010 .

[41]  Y. Guivarc’h,et al.  Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov , 1988 .

[42]  YEOR HAFOUTA Limit theorems for some skew products with mixing base maps , 2021, Ergodic Theory and Dynamical Systems.

[43]  Jason Atnip An Almost Sure Invariance Principle for Several Classes of Random Dynamical Systems , 2017, 1702.07691.

[44]  Richard C. Bradley,et al.  Introduction to strong mixing conditions , 2007 .