The satisfiability threshold for randomly generated binary constraint satisfaction problems

We study two natural models of randomly generated constraint satisfaction problems. We determine how quickly the domain size must grow with n to ensure that these models are robust in the sense that they exhibit a non-trivial threshold of satisfiability, and we determine the asymptotic order of that threshold. We also provide resolution complexity lower bounds for these models.

[1]  Toby Walsh,et al.  Random Constraint Satisfaction: Flaws and Structure , 2004, Constraints.

[2]  Abraham D. Flaxman A sharp threshold for a random constraint satisfaction problem , 2004, Discret. Math..

[3]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[4]  Olivier Dubois,et al.  The 3-XORSAT threshold , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[5]  Michael Molloy,et al.  Models for Random Constraint Satisfaction Problems , 2003, SIAM J. Comput..

[6]  Michael Molloy,et al.  A sharp threshold in proof complexity , 2001, STOC '01.

[7]  Barbara M. Smith,et al.  Constructing an asymptotic phase transition in random binary constraint satisfaction problems , 2001, Theor. Comput. Sci..

[8]  Michael E. Saks,et al.  The Efficiency of Resolution and Davis--Putnam Procedures , 2002, SIAM J. Comput..

[9]  Mohammad R. Salavatipour,et al.  The resolution complexity of random constraint satisfaction problems , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[10]  David L. Waltz,et al.  Understanding Line drawings of Scenes with Shadows , 1975 .

[11]  Nadia Creignou,et al.  Generalized satisfiability problems: minimal elements and phase transitions , 2003, Theor. Comput. Sci..

[12]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[13]  Eugene C. Freuder A Sufficient Condition for Backtrack-Free Search , 1982, JACM.

[14]  H. Levesque,et al.  The resolution complexity of constraint satisfaction , 2002 .

[15]  David G. Mitchell,et al.  The resolution complexity of random graph k-colorability , 2005, Discret. Appl. Math..

[16]  Yannis C. Stamatiou,et al.  Random Constraint Satisfaction: A More Accurate Picture , 1997, CP.

[17]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[18]  Alan K. Mackworth Constraint Satisfaction , 1985 .

[19]  Christophe Lecoutre Constraint Networks , 1992 .

[20]  Wei Li,et al.  Many hard examples in exact phase transitions , 2003, Theor. Comput. Sci..

[21]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.

[22]  Joel H. Spencer,et al.  Sudden Emergence of a Giantk-Core in a Random Graph , 1996, J. Comb. Theory, Ser. B.

[23]  Wei Li,et al.  Exact Phase Transitions in Random Constraint Satisfaction Problems , 2000, J. Artif. Intell. Res..

[24]  Martin E. Dyer,et al.  A probabilistic analysis of randomly generated binary constraint satisfaction problems , 2003, Theor. Comput. Sci..

[25]  Edward A. Bender,et al.  The Asymptotic Number of Labeled Graphs with Given Degree Sequences , 1978, J. Comb. Theory A.