Advancement of motion psychophysics: review 2001-2010.

This is a survey of psychophysical studies of motion perception carried out mainly in the last 10 years. It covers a wide range of topics, including the detection and interactions of local motion signals, motion integration across various dimensions for vector computation and global motion perception, second-order motion and feature tracking, motion aftereffects, motion-induced mislocalizations, timing of motion processing, cross-attribute interactions for object motion, motion-induced blindness, and biological motion. While traditional motion research has benefited from the notion of the independent "motion processing module," recent research efforts have been also directed to aspects of motion processing in which interactions with other visual attributes play critical roles. This review tries to highlight the richness and diversity of this large research field and to clarify what has been done and what questions have been left unanswered.

[1]  Zijiang J. He,et al.  Boundary contour-based surface integration affected by color , 2010, Vision Research.

[2]  Shaul Hochstein,et al.  Isolating the effect of one-dimensional motion signals on the perceived direction of moving two-dimensional objects , 1993, Vision Research.

[3]  R. Sekuler,et al.  Hysteresis in the perception of motion direction as evidence for neural cooperativity , 1986, Nature.

[4]  Roberto Arrighi,et al.  Meaningful auditory information enhances perception of visual biological motion. , 2009, Journal of vision.

[5]  John A. Greenwood,et al.  Pushing the limits of transparent-motion detection with binocular disparity , 2006, Vision Research.

[6]  Robert F. Hess,et al.  Second-order optic flow processing , 2007, Vision Research.

[7]  F. A. Miles,et al.  Reversed short-latency ocular following , 2002, Vision Research.

[8]  Kazushi Maruya,et al.  Adaptation to invisible motion results in low-level but not high-level aftereffects. , 2008, Journal of vision.

[9]  R. Snowden,et al.  Shifts in perceived position following adaptation to visual motion , 1998, Current Biology.

[10]  Hirohisa Yaguchi,et al.  Smooth shifts of visual attention , 2002, Vision Research.

[11]  Brian J Scholl,et al.  “Perceptual Scotomas” , 2008, Psychological science.

[12]  Peter Wenderoth,et al.  The different mechanisms of the motion direction illusion and aftereffect , 2007, Vision Research.

[13]  Jane H Sumnall,et al.  The extra-retinal motion aftereffect. , 2003, Journal of vision.

[14]  S. Dakin,et al.  Snakes and ladders: the role of temporal modulation in visual contour integration , 2001, Vision Research.

[15]  Marco Bertamini,et al.  Illusory surfaces affect the integration of local motion signals , 2004, Vision Research.

[16]  Qin Hu,et al.  A set of high-order spatiotemporal stimuli that elicit motion and reverse-phi percepts. , 2010, Journal of vision.

[17]  Bart Farell,et al.  A new theory of structure-from-motion perception. , 2009, Journal of vision.

[18]  P. Verghese,et al.  Combining speed information across space , 1995, Vision Research.

[19]  D. Purves,et al.  The wagon wheel illusion in movies and reality. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Movshon,et al.  Integration of sensory evidence in motion discrimination. , 2007, Journal of vision.

[21]  Christopher C. Pack,et al.  The role of V1 surround suppression in MT motion integration. , 2010, Journal of neurophysiology.

[22]  P. Tse,et al.  Mechanisms underlying the perceived angular velocity of a rigidly rotating object , 2006, Vision Research.

[23]  Nikolaus F. Troje,et al.  Stimulus magnification equates identification and discrimination of biological motion across the visual field , 2008, Vision Research.

[24]  R. Blake,et al.  What constitutes an efficient reference frame for vision? , 2002, Nature Neuroscience.

[25]  A. Doorn,et al.  Spatio-temporal tuning of motion coherence detection at different luminance levels , 2002, Vision Research.

[26]  Marijn C. W. Kroes,et al.  The parallel between reverse-phi and motion aftereffects. , 2007, Journal of vision.

[27]  Shin'ya Nishida,et al.  How motion signals are integrated across frequencies: study on motion perception and ocular following responses using multiple-slit stimuli. , 2010, Journal of neurophysiology.

[28]  Brian A Wandell,et al.  Assessment of stimulus-induced changes in human V1 visual field maps. , 2006, Journal of neurophysiology.

[29]  John Schlag,et al.  A new form of illusory conjunction between color and shape , 2010 .

[30]  Kenji Yokoi,et al.  Dynamic distortion of visual position representation around moving objects. , 2008, Journal of vision.

[31]  Marijn C. W. Kroes,et al.  Sensitivity for reverse-phi motion , 2009, Vision Research.

[32]  B. Cumming,et al.  All Pulfrich-like illusions can be explained without joint encoding of motion and disparity. , 2005, Journal of vision.

[33]  Peter Wenderoth,et al.  Dichoptic reduction of the direction illusion is not due to binocular rivalry , 2010, Vision Research.

[34]  Dirk Kerzel,et al.  The trial context determines adjusted localization of stimuli: reconciling the Fröhlich and onset repulsion effects , 2004, Vision Research.

[35]  David C. Burr,et al.  Pooling and segmenting motion signals , 2009, Vision Research.

[36]  John Harris,et al.  Spatial Offset of Test Field Elements from Surround Elements Affects the Strength of Motion Aftereffects , 2008, Perception.

[37]  Y. Ejima,et al.  Dependencies of Motion Assimilation and Motion Contrast on Spatial Properties of Stimuli: Spatial-frequency Nonselective and Selective Interactions Between Local Motion Detectors , 1997, Vision Research.

[38]  R. Wurtz,et al.  An illusory transformation of optic flow fields , 1993, Vision Research.

[39]  David R. Badcock,et al.  Second-order orientation cues to the axis of motion , 2009, Vision Research.

[40]  William H Warren,et al.  Catching fly balls in virtual reality: a critical test of the outfielder problem. , 2009, Journal of vision.

[41]  R. Gottsdanker The ability of human operators to detect acceleration of target motion. , 1956, Psychological bulletin.

[42]  David R. Badcock,et al.  Detecting the displacement of periodic patterns , 1985, Vision Research.

[43]  R O Duncan,et al.  Occlusion and the Interpretation of Visual Motion: Perceptual and Neuronal Effects of Context , 2000, The Journal of Neuroscience.

[44]  Patrick Cavanagh,et al.  Mobile computation: spatiotemporal integration of the properties of objects in motion. , 2008, Journal of vision.

[45]  Patrick Cavanagh,et al.  Interattribute apparent motion , 1989, Vision Research.

[46]  Shin'ya Nishida,et al.  A motion aftereffect seen more strongly by the non-adapted eye: evidence of multistage adaptation in visual motion processing , 2001, Vision Research.

[47]  T Ledgeway,et al.  The Duration of the Motion Aftereffect following Adaptation to First-Order and Second-Order Motion , 1994, Perception.

[48]  I. Murakami Correlations between fixation stability and visual motion sensitivity , 2004, Vision Research.

[49]  Fang Fang,et al.  Strong influence of test patterns on the perception of motion aftereffect and position. , 2004, Journal of vision.

[50]  Randolph Blake,et al.  Weakened Center-Surround Interactions in Visual Motion Processing in Schizophrenia , 2006, The Journal of Neuroscience.

[51]  Dorita H. F. Chang,et al.  Characterizing global and local mechanisms in biological motion perception. , 2009, Journal of vision.

[52]  Kathy T. Mullen,et al.  S-cone contributions to linear and non-linear motion processing , 2007, Vision Research.

[53]  Derek H. Arnold,et al.  Motion-Induced Blindness and Motion Streak Suppression , 2009, Current Biology.

[54]  R Nijhawan,et al.  The Flash-Lag Phenomenon: Object Motion and Eye Movements , 2001, Perception.

[55]  S. Zeki,et al.  The disunity of consciousness , 2003, Trends in Cognitive Sciences.

[56]  D. Alais,et al.  Tilt aftereffects and tilt illusions induced by fast translational motion: evidence for motion streaks. , 2009, Journal of vision.

[57]  S. Nishida,et al.  A common perceptual temporal limit of binding synchronous inputs across different sensory attributes and modalities , 2010, Proceedings of the Royal Society B: Biological Sciences.

[58]  T. Ledgeway,et al.  The influence of spatial and temporal noise on the detection of first-order and second-order orientation and motion direction , 2005, Vision Research.

[59]  Joan López-Moliner,et al.  Perceptual asynchrony between color and motion with a single direction change. , 2006, Journal of vision.

[60]  Patrick Cavanagh,et al.  Visual jitter: evidence for visual-motion-based compensation of retinal slip due to small eye movements , 2001, Vision Research.

[61]  Peter W. McOwan,et al.  Robust velocity computation from a biologically motivated model of motion perception , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[62]  Leo Poom,et al.  Colour, Polarity, Disparity, and Texture Contributions to Motion Segregation , 2005, Perception.

[63]  Allison M McKendrick,et al.  Pattern cues disambiguate perceived direction in simple moving stimuli , 2003, Vision Research.

[64]  Akihiro Yagi,et al.  Biological Motion Alters Coherent Motion Perception , 2008, Perception.

[65]  A. T. Smith,et al.  Antagonistic comparison of temporal frequency filter outputs as a basis for speed perception , 1994, Vision Research.

[66]  O. Braddick,et al.  Speed and direction of locally-paired dot patterns , 2000, Vision Research.

[67]  Ikuya Murakami,et al.  Functional brain imaging of the Rotating Snakes illusion by fMRI. , 2008, Journal of vision.

[68]  Norimichi Kitagawa,et al.  Hearing visual motion in depth , 2002, Nature.

[69]  John Harris,et al.  Perceived spatial displacement of motion-defined contours in peripheral vision , 2008, Vision Research.

[70]  M. Georgeson,et al.  Motion blur and motion sharpening: temporal smear and local contrast non-linearity , 1998, Vision Research.

[71]  S. Grossberg,et al.  Laminar cortical dynamics of visual form and motion interactions during coherent object motion perception. , 2007, Spatial vision.

[72]  G. Sperling Movement perception in computer-driven visual displays , 1976 .

[73]  Bart Krekelberg,et al.  Summation of Visual Motion across Eye Movements Reflects a Nonspatial Decision Mechanism , 2010, The Journal of Neuroscience.

[74]  D. Burr,et al.  Temporal integration of optic flow, measured by contrast and coherence thresholds , 2001, Vision Research.

[75]  D. Dennett,et al.  The Nature of Consciousness , 2006 .

[76]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[77]  George Mather,et al.  Psychophysical properties of two-stroke apparent motion. , 2009, Journal of vision.

[78]  Neil W. Roach,et al.  Centrifugal propagation of motion adaptation effects across visual space. , 2008, Journal of vision.

[79]  M. Ibbotson,et al.  Neurons in V1, V2, and PMLS of cat cortex are speed tuned but not acceleration tuned: the influence of motion adaptation. , 2006, Journal of neurophysiology.

[80]  K. Gegenfurtner,et al.  Motion perception at scotopic light levels. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[81]  B. Cumming,et al.  The stroboscopic Pulfrich effect is not evidence for the joint encoding of motion and depth. , 2005, Journal of vision.

[82]  S. Klein,et al.  Opponent-movement mechanisms in human vision. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[83]  Erik Blaser,et al.  When is Motion ‘Motion’? , 2008, Perception.

[84]  Erich W. Graf,et al.  Contextual effects in speed perception may occur at an early stage of processing , 2010, Vision Research.

[85]  Derek H. Arnold,et al.  Motion-induced spatial conflict , 2003, Nature.

[86]  Colin W G Clifford,et al.  Determinants of asynchronous processing in vision , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[87]  J. Enns,et al.  Object Updating and the Flash-Lag Effect , 2004, Psychological science.

[88]  M. Georgeson,et al.  Seeing blur: ‘motion sharpenin’ without motion , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[89]  Thomas A Carlson,et al.  Floating square illusion: perceptual uncoupling of static and dynamic objects in motion. , 2006, Journal of vision.

[90]  Alan L. F. Lee,et al.  A comparison of global motion perception using a multiple-aperture stimulus. , 2010, Journal of vision.

[91]  Paul V McGraw,et al.  Motion-Sensitive Neurones in V5/MT Modulate Perceived Spatial Position , 2004, Current Biology.

[92]  Matthew C Smear,et al.  Perception of Fourier and non-Fourier motion by larval zebrafish , 2000, Nature Neuroscience.

[93]  Claire V Hutchinson,et al.  Asymmetric spatial frequency tuning of motion mechanisms in human vision revealed by masking. , 2007, Investigative ophthalmology & visual science.

[94]  S. Aghdaee,et al.  Adaptation to Spiral Motion in Crowding Condition , 2005, Perception.

[95]  Dorita H. F. Chang,et al.  Acceleration carries the local inversion effect in biological motion perception. , 2009, Journal of vision.

[96]  P. Cavanagh,et al.  Position displacement, not velocity, is the cue to motion detection of second-order stimuli , 1998, Vision Research.

[97]  Patrick Cavanagh,et al.  Apparent speed increases at low luminance. , 2008, Journal of vision.

[98]  Craig Aaen-Stockdale,et al.  Global motion processing: The effect of spatial scale and eccentricity. , 2008, Journal of vision.

[99]  Joseph Krummenacher,et al.  A (fascinating) litmus test for human retino- vs. non-retinotopic processing. , 2009, Journal of vision.

[100]  R A Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. I. Psychophysics , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[101]  G. Alvarez Representing multiple objects as an ensemble enhances visual cognition , 2011, Trends in Cognitive Sciences.

[102]  S. Dakin,et al.  Comparison of the spatial-frequency selectivity of local and global motion detectors. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[103]  J. Lappin,et al.  Coherence of early motion signals , 2001, Vision Research.

[104]  Romi Nijhawan,et al.  Motion extrapolation in catching , 1994, Nature.

[105]  A. Derrington,et al.  Separate detectors for simple and complex grating patterns? , 1985, Vision Research.

[106]  P. Cavanagh,et al.  Independent, synchronous access to color and motion features , 2008, Cognition.

[107]  David R. Badcock,et al.  Analysis of the motion of 2-dimensional patterns: Evidence for a second-order process , 1992, Vision Research.

[108]  Randolph Blake,et al.  Strength of early visual adaptation depends on visual awareness , 2006 .

[109]  D. Badcock,et al.  Global-motion Perception: Interaction of Chromatic and Luminance Signals , 1996, Vision Research.

[110]  Shin'ya Nishida,et al.  Contrast-reversing global-motion stimuli reveal local interactions between first- and second-order motion signals , 2004, Vision Research.

[111]  Hirohisa Yaguchi,et al.  Motion in depth based on inter-ocular velocity differences , 2000, Vision Research.

[112]  Christopher P Benton,et al.  Fractal rotation isolates mechanisms for form-dependent motion in human vision , 2007, Biology Letters.

[113]  P. Cavanagh,et al.  Visual stability based on remapping of attention pointers , 2010, Trends in Cognitive Sciences.

[114]  Neil W. Roach,et al.  Report a Forward Prediction of Spatial Pattern , 2016 .

[115]  Szonya Durant,et al.  Latency differences and the flash-lag effect , 2003, Vision Research.

[116]  C. Clifford Perceptual adaptation: motion parallels orientation , 2002, Trends in Cognitive Sciences.

[117]  C Busettini,et al.  Short-latency ocular following in humans: sensitivity to binocular disparity , 2001, Vision Research.

[118]  Ignacio Serrano-Pedraza,et al.  Antagonism between fine and coarse motion sensors depends on stimulus size and contrast. , 2010, Journal of vision.

[119]  Norberto M. Grzywacz,et al.  Parametric decomposition of optic flow by humans , 2005, Vision Research.

[120]  Y. Ejima,et al.  Estimation of the Timing of Human Visual Perception from Magnetoencephalography , 2006, The Journal of Neuroscience.

[121]  Timothy Ledgeway,et al.  Cortical pooling algorithms for judging global motion direction , 2007, Proceedings of the National Academy of Sciences.

[122]  DAVID ALAIS,et al.  The Size and Number of Plaid Blobs Mediate the Misperception of Type-II Plaid Direction , 1997, Vision Research.

[123]  P. Cavanagh,et al.  Motion: the long and short of it. , 1989, Spatial vision.

[124]  Peter W. McOwan,et al.  Computational modelling of interleaved first- and second-order motion sequences and translating 3f+4f beat patterns , 2000, Vision Research.

[125]  Nikolaus F. Troje,et al.  Peripheral sensitivity to biological motion conveyed by first and second-order signals , 2010, Vision Research.

[126]  Allan J. Pantle,et al.  Direction-specific changes of sensitivity after brief apparent motion stimuli , 2001, Vision Research.

[127]  R. Hess,et al.  Low-level mechanisms may contribute to paradoxical motion percepts. , 2009, Journal of vision.

[128]  Takahiro Kawabe,et al.  The Audiovisual Tau Effect in Infancy , 2010, PloS one.

[129]  Alan Johnston,et al.  Motion drag induced by global motion Gabor arrays. , 2010, Journal of vision.

[130]  A. Johnston,et al.  Categorizing sex and identity from the biological motion of faces , 2001, Current Biology.

[131]  P. McOwan,et al.  Perception of motion direction in luminance-and contrast-defined reversed-phi motion sequences , 1997, Vision Research.

[132]  David Whitney,et al.  The influence of visual motion on perceived position , 2002, Trends in Cognitive Sciences.

[133]  Michael S. Landy,et al.  The kinetic depth effect and optic flowȁII. First- and second-order motion , 1991, Vision Research.

[134]  J. Krauskopf,et al.  Influence of colour on the perception of coherent motion , 1990, Nature.

[135]  Dorita H. F. Chang,et al.  Frames of reference for biological motion and face perception. , 2010, Journal of vision.

[136]  Su-Ling Yeh,et al.  A common mechanism for perceptual filling-in and motion-induced blindness , 2006, Vision Research.

[137]  Nicholas J. Priebe,et al.  The Neural Representation of Speed in Macaque Area MT/V5 , 2003, The Journal of Neuroscience.

[138]  Emily D. Grossman,et al.  Necessary but not sufficient: Motion perception is required for perceiving biological motion , 2008, Vision Research.

[139]  P. Werkhoven,et al.  Visual processing of optic acceleration , 1992, Vision Research.

[140]  Eero P. Simoncelli,et al.  Noise characteristics and prior expectations in human visual speed perception , 2006, Nature Neuroscience.

[141]  Jennifer L. Campos,et al.  Bayesian integration of visual and vestibular signals for heading. , 2009, Journal of vision.

[142]  David Whitney,et al.  Motion distorts perceived position without awareness of motion , 2005, Current Biology.

[143]  Takeo Watanabe,et al.  Neuroimaging of direction-selective mechanisms for second-order motion. , 2003, Journal of neurophysiology.

[144]  J. Gibson On the analysis of change in the optic array. , 1977, Scandinavian journal of psychology.

[145]  S. Nishida,et al.  Adaptive pooling of visual motion signals by the human visual system revealed with a novel multi-element stimulus. , 2009, Journal of vision.

[146]  Jochen Ditterich Stochastic models of decisions about motion direction: behavior and physiology , 2006 .

[147]  M. Shiffrar,et al.  Different motion sensitive units are involved in recovering the direction of moving lines , 1993, Vision Research.

[148]  F. A. Miles,et al.  Short-latency ocular following responses of monkey. I. Dependence on temporospatial properties of visual input. , 1986, Journal of neurophysiology.

[149]  Andrei Gorea,et al.  Sensory and decisional factors in motion-induced blindness. , 2007, Journal of vision.

[150]  David C. Burr,et al.  Cardinal axes for radial and circular motion, revealed by summation and by masking , 2001, Vision Research.

[151]  Bruce Luber,et al.  Transcranial magnetic stimulation differentially affects speed and direction judgments , 2001, Experimental Brain Research.

[152]  Tatsuto Takeuchi,et al.  Velocity discrimination in scotopic vision , 2000, Vision Research.

[153]  Hongjing Lu,et al.  Structural processing in biological motion perception. , 2010, Journal of vision.

[154]  Joachim Hohnsbein,et al.  Visual Analysis of Changes of Motion in Reaction-Time Tasks , 2005, Perception.

[155]  David Whitney,et al.  Position shifts following crowded second-order motion adaptation reveal processing of local and global motion without awareness. , 2007, Journal of vision.

[156]  Jason Bell,et al.  Local motion effects on form in radial frequency patterns. , 2010, Journal of vision.

[157]  Ning Qian,et al.  Motion rivalry impairs motion repulsion , 2001, Vision Research.

[158]  Sophie M. Wuerger,et al.  Reaction time facilitation for horizontally moving auditory-visual stimuli. , 2010, Journal of vision.

[159]  Robert F Hess,et al.  Global motion processing: invariance with mean luminance. , 2010, Journal of vision.

[160]  D. Lindsey Direction repulsion in unfiltered and ring-filtered Julesz textures , 2001, Perception & psychophysics.

[161]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[162]  Eero P. Simoncelli,et al.  Visual motion aftereffects arise from a cascade of two isomorphic adaptation mechanisms. , 2009, Journal of vision.

[163]  Lee A. Gilroy,et al.  A common mechanism for the perception of first-order and second-order apparent motion , 2005, Vision Research.

[164]  A. Pinkus,et al.  Probing Visual Motion Signals with a Priming Paradigm , 1997, Vision Research.

[165]  Junji Watanabe,et al.  Veridical perception of moving colors by trajectory integration of input signals. , 2007, Journal of vision.

[166]  R. Sekuler,et al.  Mutual repulsion between moving visual targets. , 1979, Science.

[167]  David R. Badcock,et al.  Global motion perception: Interaction of the ON and OFF pathways , 1994, Vision Research.

[168]  David Alais,et al.  Neural latencies do not explain the auditory and audio-visual flash-lag effect , 2005, Vision Research.

[169]  Qasim Zaidi,et al.  Visual processing of motion boundaries , 1995, Vision Research.

[170]  Katsumi Watanabe,et al.  The motion-induced position shift depends on the visual awareness of motion , 2005, Vision Research.

[171]  Dora E. Angelaki,et al.  Sensory Convergence Solves a Motion Ambiguity Problem , 2005, Current Biology.

[172]  Kazushi Maruya,et al.  Spatial pooling of one-dimensional second-order motion signals. , 2011, Journal of vision.

[173]  T. Freeman,et al.  Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure , 1992, Vision Research.

[174]  Johannes M. Zanker,et al.  Theta motion: a paradoxical stimulus to explore higher order motion extraction , 1993, Vision Research.

[175]  Joan López-Moliner,et al.  Vision affects how fast we hear sounds move. , 2007, Journal of vision.

[176]  Tatsuto Takeuchi,et al.  The effect of retinal illuminance on visual motion priming , 2011, Vision Research.

[177]  L. Bowns Evidence for a Feature Tracking Explanation of Why Type II Plaids Move in the Vector Sum Direction at Short Durations , 1996, Vision Research.

[178]  Shinsuke Shimojo,et al.  Perceptual-binding and persistent surface segregation , 2004, Vision Research.

[179]  Alan C. Evans,et al.  Cortical specialization for processing first- and second-order motion. , 2003, Cerebral cortex.

[180]  P. Verghese,et al.  Spatial Layout Affects Speed Discrimination , 1997, Vision Research.

[181]  Bart Krekelberg,et al.  Effects of spatial attention and salience cues on chromatic and achromatic motion processing , 2007, Vision Research.

[182]  Gianluca Campana,et al.  Implied motion from static photographs influences the perceived position of stationary objects , 2011, Vision Research.

[183]  Christopher C. Pack,et al.  Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain , 2001, Nature.

[184]  Timothy Ledgeway,et al.  Spatial summation of first-order and second-order motion in human vision , 2010, Vision Research.

[185]  Takahiro Kawabe,et al.  Subjective disappearance of a target by flickering flankers , 2007, Vision Research.

[186]  M. Lappe,et al.  Perception of biological motion from limited-lifetime stimuli , 2006, Perception & psychophysics.

[187]  Hersh Sagreiya,et al.  Explaining the footsteps, belly dancer, Wenceslas, and kickback illusions. , 2006, Journal of vision.

[188]  Linda Bowns,et al.  ‘Squaring’ is Better at Predicting Plaid Motion than the Vector Average or Intersection of Constraints , 2006, Perception.

[189]  Markus Huff,et al.  Conflicting motion information impairs multiple object tracking. , 2010, Journal of vision.

[190]  Daniel Linares,et al.  Position perception: influence of motion with displacement dissociated from the influence of motion alone. , 2008, Journal of neurophysiology.

[191]  Franco Lepore,et al.  Role of primary visual cortex in the binocular integration of plaid motion perception , 2005, The European journal of neuroscience.

[192]  Jean Lorenceau,et al.  Form constraints in motion binding , 2001, Nature Neuroscience.

[193]  Stephane J. M. Rainville,et al.  Opponent-motion mechanisms are self-normalizing , 2005, Vision Research.

[194]  William Curran,et al.  Direction Repulsion Goes Global , 2003, Current Biology.

[195]  N. Troje,et al.  The Inversion Effect in Biological Motion Perception: Evidence for a “Life Detector”? , 2006, Current Biology.

[196]  Minami Ito,et al.  Representation of Angles Embedded within Contour Stimuli in Area V2 of Macaque Monkeys , 2004, The Journal of Neuroscience.

[197]  P. Verghese,et al.  Integration of speed signals in the direction of motion , 2002, Perception & psychophysics.

[198]  Iain D Gilchrist,et al.  The target velocity integration function for saccades. , 2010, Journal of vision.

[199]  Christopher P. Benton,et al.  A role for contrast-normalisation in second-order motion perception , 2004, Vision Research.

[200]  J. Lange,et al.  Visual perception of biological motion by form: a template-matching analysis. , 2006, Journal of vision.

[201]  S. Nishida Motion-Based Analysis of Spatial Patterns by the Human Visual System , 2004, Current Biology.

[202]  S. Anstis The perception of apparent movement. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[203]  D. Eagleman,et al.  Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field , 2004, Vision Research.

[204]  Frans A. J. Verstraten,et al.  A new transparent motion aftereffect , 1999, Nature Neuroscience.

[205]  Tatjana Seizova-Cajic,et al.  Illusory motion reversals from unambiguous motion with visual, proprioceptive, and tactile stimuli , 2008, Vision Research.

[206]  Patrick Cavanagh,et al.  A jitter after-effect reveals motion-based stabilization of vision , 1998, Nature.

[207]  Randolph Blake,et al.  Eccentric perception of biological motion is unscalably poor , 2005, Vision Research.

[208]  M. Thirkettle,et al.  Contributions of form, motion and task to biological motion perception. , 2009, Journal of vision.

[209]  C. Koch,et al.  Attention-driven discrete sampling of motion perception. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[210]  Sieu K. Khuu,et al.  Global speed processing: evidence for local averaging within, but not across two speed ranges , 2002, Vision Research.

[211]  F. Pollick,et al.  Recognising Facial Expression from Spatially and Temporally Modified Movements , 2003, Perception.

[212]  J. Movshon,et al.  A new perceptual illusion reveals mechanisms of sensory decoding , 2007, Nature.

[213]  Avi Chaudhuri,et al.  Eye movements and the motion aftereffect: Alternatives to the induced motion hypothesis , 1991, Vision Research.

[214]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[215]  S. Nishida,et al.  Perceptual ambiguity of bistable visual stimuli causes no or little increase in perceptual latency. , 2010, Journal of vision.

[216]  Shin'ya Nishida,et al.  Large-Field Visual Motion Directly Induces an Involuntary Rapid Manual Following Response , 2005, The Journal of Neuroscience.

[217]  Hugh R. Wilson,et al.  Global shape coding for motion-defined radial-frequency contours , 2005, Vision Research.

[218]  V. Ramachandran,et al.  Motion capture anisotropy , 1987, Vision Research.

[219]  Allison B Sekuler,et al.  Spatial characteristics of center-surround antagonism in younger and older adults. , 2009, Journal of vision.

[220]  Su-Ling Yeh,et al.  Linking motion-induced blindness to perceptual filling-in , 2004, Vision Research.

[221]  Harold E. Bedell,et al.  Spatial and temporal properties of the illusory motion-induced position shift for drifting stimuli , 2007, Vision Research.

[222]  Thomas U. Otto,et al.  Assessing the microstructure of motion correspondences with non-retinotopic feature attribution. , 2008, Journal of vision.

[223]  John H. R. Maunsell,et al.  Dynamics of neuronal responses in macaque MT and VIP during motion detection , 2002, Nature Neuroscience.

[224]  Karl R Gegenfurtner,et al.  Motion processing at low light levels: Differential effects on the perception of specific motion types. , 2008, Journal of vision.

[225]  Patrick Cavanagh,et al.  Early binding of feature pairs for visual perception , 2001, Nature Neuroscience.

[226]  Hinze Hogendoorn,et al.  Interpolation and extrapolation on the path of apparent motion , 2008, Vision Research.

[227]  A. Montagnini,et al.  Do we track what we see? Common versus independent processing for motion perception and smooth pursuit eye movements: A review , 2011, Vision Research.

[228]  Luis A. Lesmes,et al.  The mechanism of isoluminant chromatic motion perception. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[229]  Mary M. Conte,et al.  Nonlinear Preprocessing in Short-range Motion , 1997, Vision Research.

[230]  Mark Edwards,et al.  Independence in the processing of first- and second-order motion signals at the local-motion-pooling level , 2010, Vision Research.

[231]  R. Blake,et al.  Motion Perception Getting Better with Age? , 2005, Neuron.

[232]  A. Derrington,et al.  Motion of contrast-modulated gratings is analysed by different mechanisms at low and at high contrasts , 2000, Vision Research.

[233]  V. S. Ramachandran,et al.  Extrapolation of motion path in human visual perception , 1983, Vision Research.

[234]  Shinsuke Shimojo,et al.  Perceiving a discontinuity in motion. , 2010, Journal of vision.

[235]  M. J. M. Lankheet,et al.  PII: S0042-6989(00)00187-5 , 2000 .

[236]  Jeounghoon Kim,et al.  Direction repulsion between components in motion transparency , 1996, Vision Research.

[237]  Norberto M. Grzywacz,et al.  Measurement of rate of expansion in the perception of radial motion , 2005, Vision Research.

[238]  P. Kornprobst,et al.  Modelling the dynamics of motion integration with a new luminance-gated diffusion mechanism , 2010, Vision Research.

[239]  Kathy T Mullen,et al.  The Magnocellular visual pathway and the flash-lag illusion. , 2010, Journal of vision.

[240]  Jon Driver,et al.  Direction of Visual Apparent Motion Driven Solely by Timing of a Static Sound , 2008, Current Biology.

[241]  Frans A. J. Verstraten,et al.  Limits of attentive tracking reveal temporal properties of attention , 2000, Vision Research.

[242]  Takahiro Kawabe,et al.  Audiovisual tau effect. , 2008, Acta psychologica.

[243]  T. Albright,et al.  Image Segmentation Enhances Discrimination of Motion in Visual Noise , 1997, Vision Research.

[244]  Derek H. Arnold,et al.  Asynchronous processing in vision Color leads motion , 2001, Current Biology.

[245]  Markus Lappe,et al.  Absolute travel distance from optic flow , 2005, Vision Research.

[246]  Eric Hiris,et al.  Detection of biological and nonbiological motion. , 2007, Journal of vision.

[247]  Mary M. Conte,et al.  Coherence and transparency of moving plaids composed of Fourier and non-Fourier gratings , 1992, Perception & psychophysics.

[248]  Erich W Graf,et al.  Motion-aftereffect-induced blindness. , 2009, Journal of vision.

[249]  G. Mather,et al.  Low-level visual processing of biological motion , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[250]  David C. Burr,et al.  Compression of visual space before saccades , 1997, Nature.

[251]  Ryota Kanai,et al.  Dynamical evolution of motion perception , 2007, Vision Research.

[252]  Timothy Ledgeway,et al.  Spatial frequency selective masking of first-order and second-order motion in the absence of off-frequency `looking' , 2004, Vision Research.

[253]  Kazushi Maruya,et al.  Conditional spatial-frequency selective pooling of one-dimensional motion signals into global two-dimensional motion , 2010, Vision Research.

[254]  Edward H Adelson,et al.  Junctions and cost functions in motion interpretation. , 2004, Journal of vision.

[255]  R A Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. III. Modeling , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[256]  P. Viviani,et al.  Colour, form, and movement are not perceived simultaneously , 2001, Vision Research.

[257]  Reza Farivar,et al.  Co-operative interactions between first- and second-order mechanisms in the processing of structure from motion. , 2010, Journal of vision.

[258]  Ronald A. Rensink,et al.  Active versus passive processing of biological motion , 2002, Perception.

[259]  K. Nakayama,et al.  Occlusion and the solution to the aperture problem for motion , 1989, Vision Research.

[260]  Satoshi Shioiri,et al.  Adaptation to relative and uniform motion. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[261]  A. Hayes,et al.  Apparent position governs contour–element binding by the visual system , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[262]  Joan López-Moliner,et al.  Motion signal and the perceived positions of moving objects. , 2007, Journal of vision.

[263]  Izumi Ohzawa,et al.  Joint-encoding of motion and depth by visual cortical neurons: neural basis of the Pulfrich effect , 2001, Nature Neuroscience.

[264]  M. Shadlen,et al.  Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task , 2002, The Journal of Neuroscience.

[265]  Stephen T. Hammett,et al.  Speed can go up as well as down at low contrast: Implications for models of motion perception , 2006, Vision Research.

[266]  Andrew M. Derrington,et al.  Errors in direction-of-motion discrimination with complex stimuli , 1987, Vision Research.

[267]  B. Krekelberg,et al.  Motion Detection Mechanisms , 2008 .

[268]  Ikuya Murakami,et al.  Illusory position shift induced by cyclopean motion , 2009, Vision Research.

[269]  Hyung-Chul O. Li,et al.  Segregation by color/luminance does not necessarily facilitate motion discrimination in the presence of motion distractors , 2001, Perception & psychophysics.

[270]  Frans A. J. Verstraten,et al.  Center–surround inhibition deepens binocular rivalry suppression , 2005, Vision Research.

[271]  B J Rogers,et al.  Illusory Continuous Motion from Oscillating Positive-Negative Patterns: Implications for Motion Perception , 1986, Perception.

[272]  Yong Gu,et al.  Decoding of MSTd Population Activity Accounts for Variations in the Precision of Heading Perception , 2010, Neuron.

[273]  Ian E Holliday,et al.  Optic flow in human vision: MEG reveals a foveo-fugal bias in V1, specialization for spiral space in hMSTs, and global motion sensitivity in the IPS. , 2008, Journal of vision.

[274]  Michael J Morgan,et al.  Linear mechanisms can produce motion sharpening , 2001, Vision Research.

[275]  Antony B. Morland,et al.  Perceptual distortions of speed at low luminance: Evidence inconsistent with a Bayesian account of speed encoding , 2007, Vision Research.

[276]  S. Nishida,et al.  Spatial-frequency tuning in the pooling of one- and two-dimensional motion signals , 2009, Vision Research.

[277]  S. Nishida,et al.  Two mechanisms underlying the effect of angle of motion direction change on colour–motion asynchrony , 2007, Vision Research.

[278]  Robert Sekuler,et al.  Coherent global motion percepts from stochastic local motions , 1984, Vision Research.

[279]  Andrew T. Smith,et al.  The Representation of Egomotion in the Human Brain , 2008, Current Biology.

[280]  R. Blake,et al.  Another means for measuring the motion aftereffect , 1993, Vision Research.

[281]  David C. Burr,et al.  Seeing biological motion , 1998, Nature.

[282]  Leland S Stone,et al.  Spatial scale of stereomotion speed processing. , 2006, Journal of vision.

[283]  R. Snowden,et al.  Phantom motion aftereffects – evidence of detectors for the analysis of optic flow , 1997, Current Biology.

[284]  Frans A. J. Verstraten,et al.  Influence of viewing distance on aftereffects of moving random pixel arrays , 2003, Vision Research.

[285]  S. Nishida,et al.  Marker Correspondence, Not Processing Latency, Determines Temporal Binding of Visual Attributes , 2002, Current Biology.

[286]  Philippe Lefèvre,et al.  Biological motion influences the visuomotor transformation for smooth pursuit eye movements , 2010, Vision Research.

[287]  Leland S Stone,et al.  Stereomotion speed perception: contributions from both changing disparity and interocular velocity difference over a range of relative disparities. , 2004, Journal of vision.

[288]  I. Murakami,et al.  A positive correlation between fixation instability and the strength of illusory motion in a static display , 2006, Vision Research.

[289]  Timothy J. Andrews,et al.  The wheels keep turning Reply to Holcombe et al. , 2005, Trends in Cognitive Sciences.

[290]  S S Shimozaki,et al.  The maintenance of apparent luminance of an object. , 1999, Journal of experimental psychology. Human perception and performance.

[291]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. , 1991, Journal of neurophysiology.

[292]  David R. Badcock,et al.  Detecting the displacements of spatial beats: No role for distortion products , 1989, Vision Research.

[293]  Bas Rokers,et al.  Strong percepts of motion through depth without strong percepts of position in depth. , 2008, Journal of vision.

[294]  Frans A. J. Verstraten,et al.  Perceptual manifestations of fast neural plasticity: Motion priming, rapid motion aftereffect and perceptual sensitization , 2005, Vision Research.

[295]  Allison M. McKendrick,et al.  Aging alters surround modulation of perceived contrast. , 2009, Journal of vision.

[296]  C. Colby,et al.  Trans-saccadic perception , 2008, Trends in Cognitive Sciences.

[297]  David Whitaker,et al.  Motion Adaptation Distorts Perceived Visual Position , 2002, Current Biology.

[298]  Derek H. Arnold,et al.  Motion induced spatial conflict following binocular integration , 2005, Vision Research.

[299]  Sieu K. Khuu,et al.  The perceived position shift of a pattern that contains internal motion is accompanied by a change in the pattern’s apparent size and shape , 2007, Vision Research.

[300]  Shinsuke Shimojo,et al.  Changing objects lead briefly flashed ones , 2000, Nature Neuroscience.

[301]  Randolph Blake,et al.  Contextual modulations of center-surround interactions in motion revealed with the motion aftereffect. , 2008, Journal of vision.

[302]  Andrei Gorea,et al.  Adaptation and prolonged inhibition as a main cause of motion-induced blindness. , 2009, Journal of vision.

[303]  Frans A. J. Verstraten,et al.  The Motion Aftereffect:A Modern Perspective , 1998 .

[304]  S. Zeki,et al.  Toward a Theory of Visual Consciousness , 1999, Consciousness and Cognition.

[305]  Takahiro Kawabe,et al.  Spatiotemporal feature attribution for the perception of visual size. , 2008, Journal of vision.

[306]  Najib J Majaj,et al.  Binocular Integration of Pattern Motion Signals by MT Neurons and by Human Observers , 2010, The Journal of Neuroscience.

[307]  Constance S. Royden,et al.  A model using MT-like motion-opponent operators explains an illusory transformation in the optic flow field , 2003, Vision Research.

[308]  V S Ramachandran,et al.  Sharpness Constancy during Movement Perception (Short Note) , 1974, Perception.

[309]  T. Poggio,et al.  Visual hyperacuity: spatiotemporal interpolation in human vision , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[310]  Erich W Graf,et al.  Equivalence of physical and perceived speed in binocular rivalry. , 2008, Journal of vision.

[311]  Stephen J Heinen,et al.  Perceptual and oculomotor evidence of limitations on processing accelerating motion. , 2003, Journal of vision.

[312]  Neil W. Roach,et al.  Dynamics of Spatial Distortions Reveal Multiple Time Scales of Motion Adaptation , 2009, Journal of neurophysiology.

[313]  R. Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. II. Physiology , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[314]  Kathy T Mullen,et al.  The contribution of color to global motion processing. , 2008, Journal of vision.

[315]  Dario L. Ringach,et al.  Flies see second-order motion , 2008, Current Biology.

[316]  Andrew M. Derrington,et al.  The analysis of motion of two-dimensional patterns: do Fourier components provide the first stage? , 1994, Vision Research.

[317]  Ennio Mingolla,et al.  Neural models of motion integration and segmentation , 2003, Neural Networks.

[318]  Bevil R. Conway,et al.  Spatiotemporal Structure of Nonlinear Subunits in Macaque Visual Cortex , 2006, The Journal of Neuroscience.

[319]  Rebecca A. Champion,et al.  A ratio model of perceived speed in the human visual system , 2005, Proceedings of the Royal Society B: Biological Sciences.

[320]  Nikolaus F. Troje,et al.  Correlated changes in perceptions of the gender and orientation of ambiguous biological motion figures , 2008, Current Biology.

[321]  P Cavanagh,et al.  A Moving Display Which Opposes Short-Range and Long-Range Signals , 1985, Perception.

[322]  Anna Brooks,et al.  An illusion of coherent global motion arising from single brief presentations of a stationary stimulus , 2003, Vision Research.

[323]  Dov Sagi,et al.  Motion-induced blindness in normal observers , 2001, Nature.

[324]  Neil W. Roach,et al.  Distortions of perceived auditory and visual space following adaptation to motion , 2008, Experimental Brain Research.

[325]  David R. Badcock,et al.  Detecting the displacements of spatial beats: A monocular capability , 1987, Vision Research.

[326]  Eric Castet,et al.  Parallel Motion Processing for the Initiation of Short-Latency Ocular Following in Humans , 2002, The Journal of Neuroscience.

[327]  Scott N. J. Watamaniuk,et al.  Temporal and spatial integration in dynamic random-dot stimuli , 1992, Vision Research.

[328]  D Kerzel,et al.  Time-to-passage judgments on circular trajectories are based on relative optical acceleration , 2001, Perception & psychophysics.

[329]  Paul B Hibbard,et al.  Global motion processing is not tuned for binocular disparity , 1999, Vision Research.

[330]  Christof Koch,et al.  Modeling Reverse-Phi Motion-Selective Neurons in Cortex: Double Synaptic-Veto Mechanism , 2003, Neural Computation.

[331]  Anthony J. Movshon,et al.  Optimal representation of sensory information by neural populations , 2006, Nature Neuroscience.

[332]  S. Dakin,et al.  The role of relative motion computation in ‘direction repulsion’ , 2000, Vision Research.

[333]  Karen K. De Valois,et al.  Visual motion mechanisms under low retinal illuminance revealed by motion reversal , 2009, Vision Research.

[334]  D. Melcher Spatiotopic Transfer of Visual-Form Adaptation across Saccadic Eye Movements , 2005, Current Biology.

[335]  Tom C A Freeman,et al.  Do we have direct access to retinal image motion during smooth pursuit eye movements? , 2009, Journal of vision.

[336]  Erich W. Graf,et al.  Extrinsic factors in the perception of bistable motion stimuli , 2010, Vision Research.

[337]  N. F. Troje,et al.  2.13 – Biological Motion Perception , 2008 .

[338]  David Melcher,et al.  Dynamic, object-based remapping of visual features in trans-saccadic perception. , 2008, Journal of vision.

[339]  Heiko Neumann,et al.  Interactions of motion and form in visual cortex – A neural model , 2008, Journal of Physiology-Paris.

[340]  Bart Farell,et al.  Motion in depth from interocular velocity differences revealed by differential motion aftereffect , 2006, Vision Research.

[341]  David Whitney,et al.  Motion distorts visual space: shifting the perceived position of remote stationary objects , 2000, Nature Neuroscience.

[342]  Heather Carnahan,et al.  Action–perception dissociation in response to target acceleration , 2002, Vision Research.

[343]  J. Enns Visual binding in the standing wave illusion , 2002, Psychonomic bulletin & review.

[344]  P. Mamassian,et al.  Multisensory processing in review: from physiology to behaviour. , 2010, Seeing and perceiving.

[345]  Gene R Stoner,et al.  Auditory modulation of visual apparent motion with short spatial and temporal intervals. , 2010, Journal of vision.

[346]  Davis M. Glasser,et al.  Low-level mechanisms do not explain paradoxical motion percepts. , 2010, Journal of vision.

[347]  T. Albright,et al.  Motion coherency rules are form-cue invariant , 1992, Vision Research.

[348]  Alexander Thiele,et al.  Speed skills: measuring the visual speed analyzing properties of primate MT neurons , 2001, Nature Neuroscience.

[349]  Jean Lorenceau,et al.  Perceptual grouping in the Ternus display: evidence for an `association field' in apparent motion , 2002, Vision Research.

[350]  R J Snowden,et al.  Stereoscopic Depth Cues Can Segment Motion Information , 1999, Perception.

[351]  Monica Gori,et al.  Anti-Glass patterns and real motion perception: same or different mechanisms? , 2008, Journal of vision.

[352]  Peter Thompson,et al.  Velocity after-effects: The effects of adaptation to moving stimuli on the perception of subsequently seen moving stimuli , 1981, Vision Research.

[353]  Kiyoshi Fujimoto,et al.  Backscroll illusion: Apparent motion in the background of locomotive objects , 2006, Vision Research.

[354]  David Whitney,et al.  Visually guided reaching depends on motion area MT+. , 2007, Cerebral cortex.

[355]  S. McKee,et al.  The precision of binocular and monocular depth judgments in natural settings. , 2010, Journal of vision.

[356]  A. T. Smith,et al.  Sharpening of drifting, blurred images , 1995, Vision Research.

[357]  Alain Berthoz,et al.  Estimating the time-to-passage of visual self-motion: Is the second order motion information processed? , 2010, Vision Research.

[358]  F. A. Miles,et al.  Spatial summation properties of the human ocular following response (OFR): Evidence for nonlinearities due to local and global inhibitory interactions , 2008, Vision Research.

[359]  Karl R Gegenfurtner,et al.  Spatial distortions and processing latencies in the onset repulsion and Fröhlich effects , 2004, Vision Research.

[360]  Philippe Lefèvre,et al.  Biological motion drives perception and action. , 2010, Journal of vision.

[361]  William Curran,et al.  Test stimulus characteristics determine the perceived speed of the dynamic motion aftereffect , 2006, Vision Research.

[362]  R. L. Valois,et al.  Vernier acuity with stationary moving Gabors , 1991, Vision Research.

[363]  Frans A. J. Verstraten,et al.  Independent Aftereffects of Attention and Motion , 2000, Neuron.

[364]  Shin'ya Nishida,et al.  Influence of motion signals on the perceived position of spatial pattern , 1999, Nature.

[365]  Chris J. Tinsley,et al.  Processing of first-order motion in marmoset visual cortex is influenced by second-order motion , 2006, Visual Neuroscience.

[366]  D J Heeger,et al.  Model for the extraction of image flow. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[367]  Rufin VanRullen,et al.  The Continuous Wagon Wheel Illusion and the ‘When’ Pathway of the Right Parietal Lobe: A Repetitive Transcranial Magnetic Stimulation Study , 2008, PloS one.

[368]  A. Cobo-Lewis,et al.  Dichoptic plaids may rival, but their motions can integrate. , 2000, Spatial vision.

[369]  Harold E Bedell,et al.  Suppression of motion-produced smear during smooth pursuit eye movements , 1996, Current Biology.

[370]  P. Mamassian,et al.  The effects of task and saliency on latencies for colour and motion processing , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[371]  M. J. Van der Smagt,et al.  Context and the Motion Aftereffect: Occlusion Cues in the Test Pattern Alter Perceived Direction , 2002, Perception.

[372]  Timothy Ledgeway,et al.  Visual adaptation reveals asymmetric spatial frequency tuning for motion. , 2009, Journal of vision.

[373]  S. Nishida,et al.  Motion aftereffect with flickering test patterns reveals higher stages of motion processing , 1995, Vision Research.

[374]  Bart Farell,et al.  Shape constancy and depth-order violations in structure from motion: a look at non-frontoparallel axes of rotation. , 2007, Journal of vision.

[375]  Dirk Kerzel,et al.  Contributions of visible persistence and perceptual set to the flash-lag effect: Focusing on flash onset abolishes the illusion , 2009, Vision Research.

[376]  Naoyuki Osaka,et al.  Motion aftereffect with flickering test stimuli depends on adapting velocity , 1995, Vision Research.

[377]  Kiyoshi Fujimoto,et al.  Motion Induction from Biological Motion , 2003, Perception.

[378]  J A Beintema,et al.  Perception of biological motion without local image motion , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[379]  J. Hennig,et al.  The Processing of First- and Second-Order Motion in Human Visual Cortex Assessed by Functional Magnetic Resonance Imaging (fMRI) , 1998, The Journal of Neuroscience.

[380]  George Sperling,et al.  Attention-generated apparent motion , 1995, Nature.

[381]  Paul A. Warren,et al.  A Bayesian Model of Perceived Head-Centered Velocity during Smooth Pursuit Eye Movement , 2010, Current Biology.

[382]  Stuart Anstis,et al.  Factors affecting footsteps: contrast can change the apparent speed, amplitude and direction of motion , 2004, Vision Research.

[383]  M. Lappe,et al.  Interaction of stereo vision and optic flow processing revealed by an illusory stimulus , 1998, Vision Research.

[384]  Rémy Allard,et al.  Exploring the spatiotemporal properties of fractal rotation perception. , 2009, Journal of vision.

[385]  David Whitney,et al.  The influence of visual motion on fast reaching movements to a stationary object , 2003, Nature.

[386]  P. Cavanagh,et al.  Bi-directional illusory position shifts toward the end point of apparent motion , 2006, Vision Research.

[387]  I. Murakami,et al.  A flash-lag effect in random motion , 2001, Vision Research.

[388]  C. Duffy,et al.  Optic flow illusion and single neuron behaviour reconciled by a population model , 1999, The European journal of neuroscience.

[389]  Patrick Cavanagh,et al.  Attentive tracking shifts the perceived location of a nearby flash , 2005, Vision Research.

[390]  Wilson S. Geisler,et al.  Motion streaks provide a spatial code for motion direction , 1999, Nature.

[391]  R. Goutcher,et al.  Motion transparency from opposing luminance modulated and contrast modulated gratings , 2009, Vision Research.

[392]  M. Morgan,et al.  Predicting the motion after-effect from sensitivity loss , 2006, Vision Research.

[393]  K. Nakayama,et al.  The aperture problem—II. Spatial integration of velocity information along contours , 1988, Vision Research.

[394]  N. Troje Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. , 2002, Journal of vision.

[395]  Uwe J. Ilg,et al.  The role of areas MT and MST in coding of visual motion underlying the execution of smooth pursuit , 2008, Vision Research.

[396]  David Whitney,et al.  Second-order motion without awareness: Passive adaptation to second-order motion produces a motion aftereffect , 2007, Vision Research.

[397]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[398]  James T. Enns,et al.  The path of least persistence: Object status mediates visual updating , 2007, Vision Research.

[399]  Anne-Marie Brouwer,et al.  Perception of acceleration with short presentation times: Can acceleration be used in interception? , 2001, Perception & psychophysics.

[400]  J. Pettigrew,et al.  Does Interhemispheric Competition Mediate Motion-Induced Blindness? A Transcranial Magnetic Stimulation Study , 2003, Perception.

[401]  Ayse Pinar Saygin,et al.  In the Footsteps of Biological Motion and Multisensory Perception , 2008, Psychological science.

[402]  M. Graziano,et al.  Tuning of MST neurons to spiral motions , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[403]  Andreas Bartels,et al.  The Coding of Color, Motion, and Their Conjunction in the Human Visual Cortex , 2009, Current Biology.

[404]  G. Campana,et al.  Separate motion-detecting mechanisms for first- and second-order patterns revealed by rapid forms of visual motion priming and motion aftereffect. , 2009, Journal of vision.

[405]  O. Braddick A short-range process in apparent motion. , 1974, Vision research.

[406]  Nestor Matthews,et al.  Task-specific perceptual learning on speed and direction discrimination , 2003, Vision Research.

[407]  V. Lollo,et al.  Beyond Visible Persistence: An Alternative Account of Temporal Integration and Segregation in Visual Processing , 1994, Cognitive Psychology.

[408]  Tsunehiro Takeda,et al.  Alpha band amplification during illusory jitter perception. , 2008, Journal of vision.

[409]  Junghyun Park,et al.  Non-veridical visual motion perception immediately after saccades , 2001, Vision Research.

[410]  David R Badcock,et al.  Independent speed-tuned global-motion systems , 1998, Vision Research.

[411]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[412]  P. Cavanagh,et al.  Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli , 2000, Vision Research.

[413]  Mark Nawrot,et al.  Depth from motion parallax scales with eye movement gain. , 2003, Journal of vision.

[414]  Monica Gori,et al.  Powerful motion illusion caused by temporal asymmetries in ON and OFF visual pathways. , 2006, Journal of neurophysiology.

[415]  Aaron R. Seitz,et al.  What a difference a parameter makes: A psychophysical comparison of random dot motion algorithms , 2009, Vision Research.

[416]  Y. Frégnac,et al.  Orientation dependent modulation of apparent speed: a model based on the dynamics of feed-forward and horizontal connectivity in V1 cortex , 2002, Vision Research.

[417]  David Whitney,et al.  Independent coding of object motion and position revealed by distinct contingent aftereffects , 2007, Vision Research.

[418]  Scott N.J. Watamaniuk,et al.  Segregation from direction differences in dynamic random-dot stimuli , 2003, Vision Research.

[419]  T. Ledgeway,et al.  Sensitivity to spatial and temporal modulations of first-order and second-order motion , 2006, Vision Research.

[420]  Jean Lorenceau,et al.  Effects of a static textured background on motion integration , 1995, Vision Research.

[421]  A. Watson,et al.  Motion-contrast sensitivity: visibility of motion gradients of various spatial frequencies , 1994 .

[422]  Frans A. J. Verstraten,et al.  Perceived timing of new objects and feature changes. , 2009, Journal of vision.

[423]  David Burr,et al.  Vision: The World through Picket Fences , 2004, Current Biology.

[424]  Edward H Adelson,et al.  The geometry of the occluding contour and its effect on motion interpretation. , 2004, Journal of vision.

[425]  Yoshimichi Ejima,et al.  Effects of luminance contrast and phase difference on motion assimilation for sinusoidal gratings , 1995, Vision Research.

[426]  G. Boynton,et al.  Effects of feature-based attention on the motion aftereffect at remote locations , 2006, Vision Research.

[427]  Marina Pavlova,et al.  Prior Knowledge about Display Inversion in Biological Motion Perception , 2003, Perception.

[428]  Arash Afraz,et al.  Topography of the motion aftereffect with and without eye movements. , 2008, Journal of vision.

[429]  K. Nakayama,et al.  Adaptation aftereffects in the perception of gender from biological motion. , 2006, Journal of vision.

[430]  Gillian S. Barbieri-Hesse,et al.  Motion, Flash, and Flicker: A Unified Spatiotemporal Model of Perceived Edge Sharpening , 2003, Perception.

[431]  M. Georgeson,et al.  Motion contrast: a new metric for direction discrimination , 1997, Vision Research.

[432]  P. Cavanagh,et al.  Motion adaptation shifts apparent position without the motion aftereffect , 2003, Perception & psychophysics.

[433]  Benjamin T Backus,et al.  Illusory motion from change over time in the response to contrast and luminance. , 2005, Journal of vision.

[434]  F. Miles,et al.  Short-latency ocular following in humans is dependent on absolute (rather than relative) binocular disparity , 2003, Vision Research.

[435]  Bevil R. Conway,et al.  Neural Basis for a Powerful Static Motion Illusion , 2005, The Journal of Neuroscience.

[436]  T. Papathomas,et al.  Audiovisual short-term influences and aftereffects in motion: examination across three sets of directional pairings. , 2008, Journal of vision.

[437]  P. Cavanagh,et al.  Tracking multiple targets with multifocal attention , 2005, Trends in Cognitive Sciences.

[438]  Shin'ya Nishida,et al.  Space and Time in Perception and Action: The time marker account of cross-channel temporal judgments , 2010 .

[439]  A. Georgopoulos,et al.  Neurophysiology of perceptual and motor aspects of interception. , 2006, Journal of neurophysiology.

[440]  Ryota Kanai,et al.  Blindness to inconsistent local signals in motion transparency from oscillating dots , 2004, Vision Research.

[441]  Dorita H. F. Chang,et al.  Perception of animacy and direction from local biological motion signals. , 2008, Journal of vision.

[442]  James M. G. Tsui,et al.  Brief motion stimuli preferentially activate surround-suppressed neurons in macaque visual area MT , 2008, Current Biology.

[443]  C P Benton,et al.  A new approach to analysing texture-defined motion , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[444]  Ryota Kanai,et al.  Perceptual Alternation Induced by Visual Transients , 2005, Perception.

[445]  Patrick Cavanagh,et al.  The reference frame of the motion aftereffect is retinotopic. , 2009, Journal of vision.

[446]  A. M. Derrington,et al.  Errors in direction-of-motion discrimination with dichoptically viewed stimuli , 1993, Vision Research.

[447]  Richard J A van Wezel,et al.  Velocity Dependence of the Interocular Transfer of Dynamic Motion Aftereffects , 2003, Perception.

[448]  Barbara Anne Dosher,et al.  Attention mechanisms for multi-location first- and second-order motion perception , 2000, Vision Research.

[449]  D. Burr,et al.  Motion vision: Are ‘speed lines’ used in human visual motion? , 2000, Current Biology.

[450]  I. Murakami,et al.  The flash-lag effect as a spatiotemporal correlation structure. , 2001, Journal of vision.

[451]  Ikuya Murakami,et al.  Illusory jitter in a static stimulus surrounded by a synchronously flickering pattern , 2003, Vision Research.

[452]  O J Braddick,et al.  Low-level and high-level processes in apparent motion. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[453]  Takashi R Sato,et al.  Perceived Shifts of Flashed Stimuli by Visible and Invisible Object Motion , 2003, Perception.

[454]  K. Tanaka,et al.  Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. , 1989, Journal of neurophysiology.

[455]  R. Blake,et al.  Perception of human motion. , 2007, Annual review of psychology.

[456]  D. Burr,et al.  Contrast sensitivity at high velocities , 1982, Vision Research.

[457]  Adriane E Seiffert,et al.  Functional MRI studies of human visual motion perception: texture, luminance, attention and after-effects. , 2003, Cerebral cortex.

[458]  S. Dakin,et al.  Spatial interference among moving targets , 2005, Vision Research.

[459]  Robert Patterson Three-systems theory of human visual motion perception: review and update: comment. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[460]  Randolph Blake,et al.  Broad tuning for spatial frequency of neural mechanisms underlying visual perception of coherent motion , 1994, Nature.

[461]  P. Thompson,et al.  Human speed perception is contrast dependent , 1992, Vision Research.

[462]  Andrew Glennerster,et al.  Stereo and motion parallax cues in human 3D vision: can they vanish without a trace? , 2006, Journal of vision.

[463]  Derek H. Arnold,et al.  Motion and position coding , 2007, Vision Research.

[464]  Tatsuto Takeuchi,et al.  PII: S0042-6989(98)00019-4 , 1998 .

[465]  Jocelyn Faubert,et al.  How is complex second-order motion processed? , 2003, Vision Research.

[466]  Hiroshi Ashida,et al.  A hierarchical structure of motion system revealed by interocular transfer of flicker motion aftereffects , 2000, Vision Research.

[467]  Ning Qian,et al.  Effects of attention on motion repulsion , 2005, Vision Research.

[468]  D. Burr,et al.  Cardinal directions for visual optic flow , 1999, Current Biology.

[469]  Stephane J. M. Rainville,et al.  The spatial properties of opponent-motion normalization , 2002, Vision Research.

[470]  Duje Tadin,et al.  Optimal size for perceiving motion decreases with contrast , 2005, Vision Research.

[471]  Simon J. Cropper The detection of motion in chromatic stimuli: Pedestals and masks , 2006, Vision Research.

[472]  Szonya Durant,et al.  Temporal dependence of local motion induced shifts in perceived position , 2004, Vision Research.

[473]  P Cavanagh,et al.  Attention-based motion perception. , 1992, Science.

[474]  S. Zeki,et al.  A direct demonstration of perceptual asynchrony in vision , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[475]  Christopher Patrick Taylor,et al.  Aging Reduces Center-Surround Antagonism in Visual Motion Processing , 2005, Neuron.

[476]  J M Findlay,et al.  Aperture Viewing*: A Review and a Synthesis , 1982, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[477]  S. Nishida,et al.  Time perception: Brain time or event time? , 2001, Current Biology.

[478]  Preeti Verghese,et al.  Perceived visual speed constrained by image segmentation , 1996, Nature.

[479]  Ian M Thornton,et al.  The onset repulsion effect. , 2002, Spatial vision.

[480]  Rémy Allard,et al.  First- and second-order motion mechanisms are distinct at low but common at high temporal frequencies. , 2008, Journal of vision.

[481]  George Mather,et al.  A motion-energy model predicts the direction discrimination and MAE duration of two-stroke apparent motion at high and low retinal illuminance , 2010, Vision Research.

[482]  Jean Lorenceau,et al.  Veridical perception of global motion from disparate component motions , 1998, Vision Research.

[483]  John A. Greenwood,et al.  The perception of motion transparency: A signal-to-noise limit , 2005, Vision Research.

[484]  Cord Westhoff,et al.  Kinematic cues for person identification from biological motion , 2007, Perception & psychophysics.

[485]  Katsumi Watanabe,et al.  Object-based anisotropic mislocalization by retinotopic motion signals , 2007, Vision Research.

[486]  J. Fodor The Modularity of mind. An essay on faculty psychology , 1986 .

[487]  P. Mazzoni,et al.  Cross-fixation transfer of motion aftereffects with expansion motion , 2006, Vision Research.

[488]  Wang Li,et al.  Distortion in perceived image size accompanies flash lag in depth. , 2008, Journal of vision.

[489]  E. Castet,et al.  Temporal dynamics of motion integration for the initiation of tracking eye movements at ultra-short latencies , 2000, Visual Neuroscience.

[490]  Margaret S Livingstone,et al.  End-Stopping and the Aperture Problem Two-Dimensional Motion Signals in Macaque V1 , 2003, Neuron.

[491]  Edward H. Adelson,et al.  Motion illusions as optimal percepts , 2002, Nature Neuroscience.

[492]  M. Giese,et al.  Nonvisual Motor Training Influences Biological Motion Perception , 2006, Current Biology.

[493]  Martina Poletti,et al.  Miniature eye movements enhance fine spatial detail , 2007, Nature.

[494]  Shin'ya Nishida,et al.  Dual multiple-scale processing for motion in the human visual System , 1997, Vision Research.

[495]  Markus Lappe,et al.  Discrimination of travel distances from ‘situated’ optic flow , 2003, Vision Research.

[496]  David Whitney,et al.  Flexible Retinotopy: Motion-Dependent Position Coding in the Visual Cortex , 2003, Science.

[497]  D. Hubel,et al.  The role of fixational eye movements in visual perception , 2004, Nature Reviews Neuroscience.

[498]  Elan Barenholtz Convexities move because they contain matter. , 2010, Journal of vision.

[499]  P. Cavanagh,et al.  Position-based motion perception for color and texture stimuli: effects of contrast and speed , 1999, Vision Research.

[500]  Steven Yantis,et al.  Visual interactions in the path of apparent motion , 1998, Nature Neuroscience.

[501]  Jungah Lee,et al.  Changes in visual motion perception before saccadic eye movements , 2005, Vision Research.

[502]  Vincent Hayward,et al.  Motion Aftereffects Transfer between Touch and Vision , 2009, Current Biology.

[503]  V. Ramachandran,et al.  Illusory Displacement of Equiluminous Kinetic Edges , 1990, Perception.

[504]  David Melcher,et al.  Spatiotopic temporal integration of visual motion across saccadic eye movements , 2003, Nature Neuroscience.

[505]  Harold E. Bedell,et al.  The perception of motion smear during eye and head movements , 2010, Vision Research.

[506]  S. Nishida,et al.  Positive motion after-effect induced by bandpass-filtered random-dot kinematograms , 1992, Vision Research.

[507]  F. Pollick,et al.  Expertise with multisensory events eliminates the effect of biological motion rotation on audiovisual synchrony perception. , 2010, Journal of vision.

[508]  David R. Badcock,et al.  Motion distorts perceived depth , 2003, Vision Research.

[509]  Derek H. Arnold,et al.  Motion-induced blindness is not tuned to retinal speed. , 2008, Journal of vision.

[510]  T. Womelsdorf,et al.  Feature-based attention influences contextual interactions during motion repulsion , 2006, Vision Research.

[511]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[512]  P. Cavanagh,et al.  Attention-based visual routines: sprites , 2001, Cognition.

[513]  George Sperling,et al.  Long-lasting sensitization to a given colour after visual search , 2004, Nature.

[514]  Luis A. Lesmes,et al.  Perceptual motion standstill in rapidly moving chromatic displays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[515]  D. Burr,et al.  The “Flash-Lag” Effect Occurs in Audition and Cross-Modally , 2003, Current Biology.

[516]  F. A. Miles,et al.  The initial ocular following responses elicited by apparent-motion stimuli: Reversal by inter-stimulus intervals , 2006, Vision Research.

[517]  T. Albright,et al.  Image Segmentation Cues in Motion Processing: Implications for Modularity in Vision , 1993, Journal of Cognitive Neuroscience.

[518]  John A. Greenwood,et al.  An extension of the transparent-motion detection limit using speed-tuned global-motion systems , 2006, Vision Research.

[519]  R. Sekuler,et al.  The independence of channels in human vision selective for direction of movement. , 1975, The Journal of physiology.

[520]  T. L. Lewis,et al.  Longer VEP latencies and slower reaction times to the onset of second-order motion than to the onset of first-order motion , 2003, Vision Research.

[521]  N. Qian,et al.  A Physiological Model for Motion-Stereo Integration and a Unified Explanation of Pulfrich-like Phenomena , 1997, Vision Research.

[522]  A. Rider,et al.  Motion-induced position shifts in global dynamic Gabor arrays. , 2009, Journal of vision.

[523]  David C. Burr,et al.  The motion aftereffect of transparent motion: Two temporal channels account for perceived direction , 2005, Vision Research.

[524]  Markus Lappe,et al.  Category-specific interference of object recognition with biological motion perception. , 2010, Journal of vision.

[525]  Katsumi Watanabe,et al.  Asymmetric Mislocalization of a Visual Flash Ahead of and behind a Moving Object , 2005, Perception.

[526]  D. Alais,et al.  Orientation tuning of contrast masking caused by motion streaks. , 2010, Journal of vision.

[527]  M. Hawken,et al.  Perceived velocity of luminance, chromatic and non-fourier stimuli: Influence of contrast and temporal frequency , 1996, Vision Research.

[528]  Takeo Watanabe,et al.  Separate Processing of Different Global-Motion Structures in Visual Cortex Is Revealed by fMRI , 2005, Current Biology.

[529]  Shinsuke Shimojo,et al.  Shifts in perceived position of flashed stimuli by illusory object motion , 2002, Vision Research.

[530]  Tom C.A. Freeman,et al.  Simultaneous adaptation of retinal and extra-retinal motion signals , 2007, Vision Research.

[531]  Christopher C. Pack,et al.  Cortical Mechanisms for the Integration of Visual Motion , 2008 .

[532]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[533]  B. Mansouri,et al.  Binocular influences on global motion processing in the human visual system , 2007, Vision Research.

[534]  S. Shimojo,et al.  Assimilation-type and Contrast-type Bias of Motion Induced by the Surround in a Random-dot Display: Evidence for Center-Surround Antagonism , 1996, Vision Research.

[535]  Wonyeong Sohn,et al.  Asymmetric interaction between motion and stereopsis revealed by concurrent adaptation. , 2009, Journal of vision.

[536]  F. A. Miles,et al.  Initial ocular following in humans: A response to first-order motion energy , 2005, Vision Research.

[537]  S. Shimojo,et al.  Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes , 1993, Vision Research.

[538]  Ikuya Murakami,et al.  The effects of eccentricity and retinal illuminance on the illusory motion seen in a stationary luminance gradient , 2008, Vision Research.

[539]  Hirohisa Yaguchi,et al.  Integration of monocular motion signals and the analysis of interocular velocity differences for the perception of motion-in-depth. , 2009, Journal of vision.

[540]  Q. Vuong,et al.  Incidental Processing of Biological Motion , 2004, Current Biology.

[541]  H R Wilson,et al.  A model for motion coherence and transparency , 1994, Visual Neuroscience.

[542]  Mitsuhiko Hanada Computational analyses for illusory transformations in the optic flow field and heading perception in the presence of moving objects , 2005, Vision Research.

[543]  David Whitaker,et al.  Non-veridical size perception of expanding and contracting objects , 1999, Vision Research.

[544]  David R. Badcock,et al.  Coherent global motion in the absence of coherent velocity signals , 2000, Current Biology.

[545]  William Curran,et al.  Speed tuning of direction repulsion describes an inverted U-function , 2003, Vision Research.

[546]  S. Zeki,et al.  Temporal hierarchy of the visual perceptive systems in the Mondrian world , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[547]  Erich W Graf,et al.  Modulating motion-induced blindness with depth ordering and surface completion , 2002, Vision Research.

[548]  D. Purves,et al.  The wagon-wheel illusion in continuous light , 2005, Trends in Cognitive Sciences.

[549]  Zijiang J. He,et al.  Surface completion affected by luminance contrast polarity and common motion. , 2010, Journal of vision.

[550]  T. Meese,et al.  Spiral mechanisms are required to account for summation of complex motion components , 2002, Vision Research.

[551]  P. McOwan,et al.  A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[552]  P. McGraw,et al.  The segregation and integration of colour in motion processing revealed by motion after-effects , 2006, Proceedings of the Royal Society B: Biological Sciences.

[553]  Maggie Shiffrar,et al.  The influence of terminators on motion integration across space , 1992, Vision Research.

[554]  D. Burr,et al.  Motion psychophysics: 1985–2010 , 2011, Vision Research.

[555]  A. Treisman The binding problem , 1996, Current Opinion in Neurobiology.

[556]  M. Lankheet,et al.  A gain-control model relating nulling results to the duration of dynamic motion aftereffects , 2003, Vision Research.

[557]  Duje Tadin,et al.  Visual coherence of moving and stationary image changes , 2002, Vision Research.

[558]  Saumil S. Patel,et al.  Color and motion: which is the tortoise and which is the hare? , 2003, Vision Research.

[559]  Casper J. Erkelens,et al.  A single motion system suffices for global-motion perception , 2006, Vision Research.

[560]  J. J. Koenderink,et al.  Spatial properties of the visual detectability of moving spatial white noise , 2004, Experimental Brain Research.

[561]  Steven C. Dakin,et al.  Local and global limitations on direction integration assessed using equivalent noise analysis , 2005, Vision Research.

[562]  Terrence J Sejnowski,et al.  Motion signals bias localization judgments: a unified explanation for the flash-lag, flash-drag, flash-jump, and Frohlich illusions. , 2007, Journal of vision.

[563]  D. Burr,et al.  Large receptive fields for optic flow detection in humans , 1998, Vision Research.

[564]  W. Newsome,et al.  A selective impairment of motion perception following lesions of the middle temporal visual area (MT) , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[565]  David Whitney,et al.  Second-order motion shifts perceived position , 2006, Vision Research.

[566]  S. Gilson,et al.  Cue combination for 3D location judgements. , 2011, Journal of vision.

[567]  P. Cavanagh,et al.  ISI produces reverse apparent motion , 1990, Vision Research.

[568]  G. Sperling,et al.  The functional architecture of human visual motion perception , 1995, Vision Research.

[569]  Taylor R. Hayes,et al.  Asymmetric transfer of perceptual learning of luminance- and contrast-modulated motion. , 2010, Journal of vision.

[570]  Amelia R Hunt,et al.  Disorganizing biological motion. , 2008, Journal of vision.

[571]  James T. Todd,et al.  The perception of globally coherent motion , 1992, Vision Research.

[572]  N. Qian,et al.  Axis-of-motion affects direction discrimination, not speed discrimination , 1999, Vision Research.

[573]  A. Metha,et al.  Enhanced motion aftereffect for complex motions , 1999, Vision Research.

[574]  K. Nakayama,et al.  Visual thresholds for shearing motion in monkey and man , 1985, Vision Research.

[575]  Erik Blaser,et al.  Maximal motion aftereffects in spite of diverted awareness , 2009, Vision Research.

[576]  Shinsuke Shimojo,et al.  Gaze modulation of visual aftereffects , 2003, Vision Research.

[577]  Harriet A. Allen,et al.  Attentional modulation of threshold sensitivity to first-order motion and second-order motion patterns , 2003, Vision Research.

[578]  Simon K Rushton,et al.  Perception of object trajectory: parsing retinal motion into self and object movement components. , 2007, Journal of vision.

[579]  Shin'ya Nishida,et al.  Spatiotemporal Tuning of Rapid Interactions between Visual-Motion Analysis and Reaching Movement , 2006, The Journal of Neuroscience.

[580]  H. Wilson,et al.  A psychophysically motivated model for two-dimensional motion perception , 1992, Visual Neuroscience.

[581]  George Mather,et al.  Two-stroke: A new illusion of visual motion based on the time course of neural responses in the human visual system , 2006, Vision Research.

[582]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[583]  A. Johnston,et al.  Perceived motion of contrast-modulated gratings: Predictions of the multi-channel gradient model and the role of full-wave rectification , 1995, Vision Research.

[584]  David Melcher,et al.  The role of attention in central and peripheral motion integration , 2004, Vision Research.

[585]  K. D. De Valois,et al.  Light adaptation in motion direction judgments. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[586]  K. D. Valois,et al.  Motion-reversal Reveals Two Motion Mechanisms Functioning in Scotopic Vision , 1997, Vision Research.

[587]  Preeti Verghese,et al.  Motion grouping impairs speed discrimination , 2006, Vision Research.

[588]  Gideon P Caplovitz,et al.  The whole moves less than the spin of its parts , 2009, Attention, perception & psychophysics.

[589]  Pete R. Jones,et al.  Development of Cue Integration in Human Navigation , 2008, Current Biology.

[590]  George Mather,et al.  Motion-induced position shifts occur after motion integration , 2009, Vision Research.

[591]  Hirohisa Yaguchi,et al.  Detection of relative and uniform motion. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[592]  Stephen T. Hammett PII: S0042-6989(97)00059-X , 2002 .

[593]  J. Schall,et al.  Neural Control of Voluntary Movement Initiation , 1996, Science.

[594]  Johannes M. Zanker PII: S0042-6989(98)00234-X , 1998 .

[595]  N Osaka,et al.  Inefficient visual search for second-order motion. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[596]  Claire V. Hutchinson,et al.  Choice reaction times for identifying the direction of first-order motion and different varieties of second-order motion , 2008, Vision Research.

[597]  Frans A. J. Verstraten,et al.  Center-surround inhibition and facilitation as a function of size and contrast at multiple levels of visual motion processing. , 2005, Journal of vision.

[598]  Richard J A van Wezel,et al.  The role of motion capture in an illusory transformation of optic flow fields. , 2008, Journal of vision.

[599]  Z L Lu,et al.  Three-systems theory of human visual motion perception: review and update. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[600]  D. Badcock,et al.  Global motion perception: No interaction between the first- and second-order motion pathways , 1995, Vision Research.

[601]  Patrick Cavanagh Is there low-level motion processing for non-luminance-based stimuli? , 1995 .

[602]  David Whitney,et al.  Voluntary attention modulates motion-induced mislocalization. , 2011, Journal of vision.

[603]  S. Wuerger,et al.  The perception of motion in chromatic stimuli. , 2005, Behavioral and cognitive neuroscience reviews.

[604]  S. Anstis,et al.  Phi movement as a subtraction process. , 1970, Vision research.

[605]  Vic Braden,et al.  Recognising the Style of Spatially Exaggerated Tennis Serves , 2001, Perception.

[606]  Angelika Lingnau,et al.  Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation , 2008, The European journal of neuroscience.

[607]  E. Adelson,et al.  Phenomenal coherence of moving visual patterns , 1982, Nature.

[608]  Robert J. Snowden,et al.  The processing of temporal modulation at different levels of retinal illuminance , 1995, Vision Research.

[609]  Jean Lorenceau,et al.  Superposition catastrophe and form-motion binding. , 2008, Journal of vision.

[610]  Thomas D. Albright,et al.  Neural correlates of perceptual motion coherence , 1992, Nature.

[611]  H. Ashida,et al.  FMRI adaptation reveals separate mechanisms for first-order and second-order motion. , 2007, Journal of neurophysiology.

[612]  D. Burr,et al.  Two stages of visual processing for radial and circular motion , 1995, Nature.

[613]  Sieu K. Khuu,et al.  Apparent position in depth of stationary moving three-dimensional objects , 2007, Vision Research.

[614]  Alexander Grunewald,et al.  Motion repulsion is monocular , 2004, Vision Research.

[615]  P. Wenderoth,et al.  Retinotopic encoding of the direction aftereffect , 2008, Vision Research.

[616]  A. Schofield,et al.  Asymmetric transfer of the dynamic motion aftereffect between first- and second-order cues and among different second-order cues. , 2007, Journal of vision.

[617]  Thomas U. Otto,et al.  The flight path of the phoenix--the visible trace of invisible elements in human vision. , 2006, Journal of vision.

[618]  G. Sperling,et al.  Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[619]  Masashi Tanigawa,et al.  Motion assimilation for expansion/contraction and rotation and its spatial properties , 1998, Vision Research.

[620]  Stuart Anstis,et al.  'Zigzag motion' goes in unexpected directions. , 2009, Journal of vision.

[621]  Bruce C Hansen,et al.  Peripheral vision: good for biological motion, bad for signal noise segregation? , 2007, Journal of vision.

[622]  D. Burr,et al.  Spatial and temporal selectivity of the human motion detection system , 1985, Vision Research.

[623]  Branka Spehar,et al.  Motion transparency promotes synchronous perceptual binding , 2004, Vision Research.

[624]  Patrick Cavanagh,et al.  The motion-induced position shift depends on the perceived direction of bistable quartet motion , 2004, Vision Research.

[625]  William Curran,et al.  The direction aftereffect is driven by adaptation of local motion detectors , 2006, Vision Research.

[626]  Akihiro Yagi,et al.  Smooth Pursuit Eye Movements Improve Temporal Resolution for Color Perception , 2010, PloS one.

[627]  A. Holcombe Seeing slow and seeing fast: two limits on perception , 2009, Trends in Cognitive Sciences.

[628]  Randolph Blake,et al.  Fine Temporal Properties of Center–Surround Interactions in Motion Revealed by Reverse Correlation , 2006, The Journal of Neuroscience.

[629]  F. A. Miles,et al.  Human ocular following initiated by competing image motions: Evidence for a winner-take-all mechanism , 2006, Vision Research.

[630]  David Alais,et al.  Motion streaks in fast motion rivalry cause orientation-selective suppression. , 2009, Journal of vision.

[631]  R. Nijhawan,et al.  Neural delays, visual motion and the flash-lag effect , 2002, Trends in Cognitive Sciences.

[632]  E H Adelson,et al.  Beyond Junctions: Nonlocal form Constraints on Motion Interpretation , 2001, Perception.

[633]  Randolph Blake,et al.  Perceptual consequences of centre–surround antagonism in visual motion processing , 2003, Nature.

[634]  Patrick Cavanagh,et al.  Human Brain Activity during Illusory Visual Jitter as Revealed by Functional Magnetic Resonance Imaging , 2002, Neuron.

[635]  Lera Boroditsky,et al.  Visual motion aftereffect from understanding motion language , 2010, Proceedings of the National Academy of Sciences.

[636]  Kazumichi Matsumiya,et al.  Motion mechanisms with different spatiotemporal characteristics identified by an MAE technique with superimposed gratings. , 2009, Journal of vision.

[637]  C. Clifford,et al.  Illusory motion reversal in tune with motion detectors , 2005, Trends in Cognitive Sciences.

[638]  Ignacio Serrano-Pedraza,et al.  Evidence for reciprocal antagonism between motion sensors tuned to coarse and fine features. , 2007, Journal of vision.

[639]  Ikuya Murakami,et al.  Illusory position shift induced by plaid motion , 2009, Vision Research.

[640]  Rufin VanRullen,et al.  The continuous Wagon Wheel Illusion is object-based , 2006, Vision Research.

[641]  J. van Santen,et al.  Elaborated Reichardt detectors. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[642]  Robert J. Snowden,et al.  Colour and polarity contributions to global motion perception , 1999, Vision Research.

[643]  Z W Pylyshyn,et al.  Tracking multiple independent targets: evidence for a parallel tracking mechanism. , 1988, Spatial vision.

[644]  Zheng Tang,et al.  3D flash lag illusion , 2004, Vision Research.

[645]  Timothy Ledgeway,et al.  The properties of the motion-detecting mechanisms mediating perceived direction in stochastic displays , 2000, Vision Research.

[646]  F. A. Miles,et al.  The initial torsional Ocular Following Response (tOFR) in humans: a response to the total motion energy in the stimulus? , 2009, Journal of vision.

[647]  Mark Edwards,et al.  Motion streaks improve motion detection , 2007, Vision Research.

[648]  John Ross,et al.  Visual processing of motion , 1986, Trends in Neurosciences.

[649]  G. DeAngelis,et al.  Multisensory integration: psychophysics, neurophysiology, and computation , 2009, Current Opinion in Neurobiology.

[650]  Mazyar Fallah,et al.  Adaptation of gender derived from biological motion , 2006, Nature Neuroscience.

[651]  David R. Badcock,et al.  No interaction of first- and second-order signals in the extraction of global-motion and optic-flow , 2011, Vision Research.

[652]  Y. Dan,et al.  Asymmetry in Visual Cortical Circuits Underlying Motion-Induced Perceptual Mislocalization , 2004, The Journal of Neuroscience.

[653]  J. Robson,et al.  Discrimination at threshold: Labelled detectors in human vision , 1981, Vision Research.

[654]  Joan López-Moliner,et al.  Components of motion perception revealed: two different after-effects from a single moving object , 2004, Vision Research.

[655]  Tsunehiro Takeda,et al.  Close similarity between spatiotemporal frequency tunings of human cortical responses and involuntary manual following responses to visual motion. , 2009, Journal of neurophysiology.

[656]  C. Koch,et al.  The Continuous Wagon Wheel Illusion Is Associated with Changes in Electroencephalogram Power at ∼13 Hz , 2006, The Journal of Neuroscience.

[657]  R. Freeman,et al.  Pulfrich phenomena are coded effectively by a joint motion-disparity process. , 2009, Journal of vision.

[658]  Ikuya Murakami,et al.  Visual motion detection sensitivity is enhanced by orthogonal induced motion. , 2010, Journal of vision.

[659]  D. Bradley,et al.  Velocity computation in the primate visual system , 2008, Nature Reviews Neuroscience.

[660]  R. VanRullen The continuous Wagon Wheel Illusion depends on, but is not identical to neuronal adaptation , 2007, Vision Research.

[661]  S. Nishida,et al.  Simultaneous motion contrast across space: Involvement of second-order motion? , 1997, Vision Research.

[662]  R. Ratcliff Modeling response signal and response time data , 2006, Cognitive Psychology.

[663]  Alfonso Caramazza,et al.  Continuous perception of motion and shape across saccadic eye movements. , 2010, Journal of vision.

[664]  Anne-Marie Brouwer,et al.  Hitting moving targets , 1998, Experimental Brain Research.

[665]  Osamu Watanabe,et al.  Perceptual costs for motion transparency evaluated by two performance measures , 2009, Vision Research.

[666]  G. Mather,et al.  The motion aftereffect reloaded , 2008, Trends in Cognitive Sciences.

[667]  Laurence R. Harris,et al.  Flash lag in depth , 2006, Vision Research.

[668]  Randolph Blake,et al.  Adaptive center-surround interactions in human vision revealed during binocular rivalry , 2006, Vision Research.

[669]  Nikolaus F Troje,et al.  Reference Frames for Orientation Anisotropies in Face Recognition and Biological-Motion Perception , 2003, Perception.

[670]  P.-J. Hsieh,et al.  The infinite regress illusion reveals faulty integration of local and global motion signals , 2006, Vision Research.

[671]  Mazyar Fallah,et al.  A Motion-Dependent Distortion of Retinotopy in Area V4 , 2006, Neuron.

[672]  Jeounghoon Kim,et al.  Dependence of plaid motion coherence on component grating directions , 1993, Vision Research.

[673]  Michael J. Berry,et al.  Anticipation of moving stimuli by the retina , 1999, Nature.

[674]  Bart Krekelberg,et al.  Sound and vision , 2003, Trends in Cognitive Sciences.

[675]  T. Freeman,et al.  Extra-Retinal Vision: Firing at Will , 2007, Current Biology.

[676]  K. Duncker,et al.  Über induzierte Bewegung , 1929 .

[677]  S Anstis,et al.  Footsteps and Inchworms: Illusions Show That Contrast Affects Apparent Speed , 2001, Perception.

[678]  S. Nishida,et al.  Human Visual System Integrates Color Signals along a Motion Trajectory , 2007, Current Biology.

[679]  Sieu K. Khuu,et al.  Global speed averaging is tuned for binocular disparity , 2006, Vision Research.

[680]  Pascal Mamassian,et al.  The efficiency of speed discrimination for coherent and transparent motion , 2003, Vision Research.

[681]  Antonino Casile,et al.  Critical features for the recognition of biological motion. , 2005, Journal of vision.

[682]  Tatsuto Takeuchi,et al.  Modulation of perceived contrast by a moving surround , 2000, Vision Research.

[683]  I. Murakami,et al.  Latency difference, not spatial extrapolation , 1998, Nature Neuroscience.

[684]  Norberto M Grzywacz,et al.  Measurement of angular velocity in the perception of rotation , 2002, Vision Research.

[685]  D. Eagleman,et al.  Evidence against the temporal subsampling account of illusory motion reversal. , 2008, Journal of vision.

[686]  Stephen Grossberg,et al.  Neural dynamics of motion integration and segmentation within and across apertures , 2001, Vision Research.

[687]  Craig Aaen-Stockdale,et al.  Biological motion perception is cue-invariant. , 2008, Journal of vision.

[688]  David Alais,et al.  Large shifts in perceived motion direction reveal multiple global motion solutions , 2006, Vision Research.

[689]  Frans A. J. Verstraten,et al.  Storage for free: a surprising property of a simple gain-control model of motion aftereffects , 2004, Vision Research.

[690]  Paul R. Schrater,et al.  Perceiving visual expansion without optic flow , 2001, Nature.

[691]  Kenji Kawano,et al.  Eye movements in response to dichoptic motion: evidence for a parallel-hierarchical structure of visual motion processing in primates. , 2008, Journal of neurophysiology.

[692]  M. Tarr,et al.  Figure-ground assignment to a translating contour: a preference for advancing vs. receding motion. , 2009, Journal of vision.

[693]  P. A. Kolers Aspects of motion perception , 1972 .

[694]  T D Albright,et al.  Cortical processing of visual motion. , 1993, Reviews of oculomotor research.

[695]  Philippe G. Schyns,et al.  Attention enhances feature integration , 2003, Vision Research.

[696]  George Mather,et al.  Distinct position assignment mechanisms revealed by cross-order motion , 2008, Vision Research.

[697]  D. Burr,et al.  A cortical area that responds specifically to optic flow, revealed by fMRI , 2000, Nature Neuroscience.

[698]  Frans A. J. Verstraten,et al.  Center–surround effects on perceived speed , 2010, Vision Research.

[699]  P. Viviani,et al.  Perceptual asynchronies for biological and non-biological visual events , 2004, Vision Research.

[700]  G. DeAngelis,et al.  A functional link between area MSTd and heading perception based on vestibular signals , 2007, Nature Neuroscience.

[701]  Steven C Dakin,et al.  The aperture problem in contoured stimuli. , 2009, Journal of vision.

[702]  Kenji Yokoi,et al.  Object-Based Anisotropies in the Flash-Lag Effect , 2006, Psychological science.

[703]  Norberto M Grzywacz,et al.  Local computation of angular velocity in rotational visual motion. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[704]  Frans A. J. Verstraten,et al.  Motion transparency: making models of motion perception transparent , 1999, Trends in Cognitive Sciences.

[705]  Eero P. Simoncelli,et al.  How MT cells analyze the motion of visual patterns , 2006, Nature Neuroscience.

[706]  Christopher C. Pack,et al.  The role of terminators and occlusion cues in motion integration and segmentation: a neural network model , 1999, Vision Research.

[707]  Janette Atkinson,et al.  Dorsal Stream Vulnerability: Interaction of Intrinsic Programmes and Acquired Developmental Disorders , 2010 .