Herschel SPIRE and PACS observations of the red supergiant VY CMa: analysis of the molecular line spectra

We present an analysis of the far-infrared and submillimetre molecular emission-line spectrum of the luminous M-supergiant VY CMa, observed with the Spectral and Photometric Imaging Receiver (SPIRE) and Photodetector Array Camera and Spectrometer for Herschel spectrometers aboard the Herschel Space Observatory. Over 260 emission lines were detected in the 190–650 μm SPIRE Fourier Transform Spectrometer spectra, with one-third of the observed lines being attributable to H2O. Other detected species include CO, 13CO, H O, SiO, HCN, SO, SO2, CS, H2S and NH3. Our model fits to the observed 12CO and 13CO line intensities yield a 12C/13C ratio of 5.6 ± 1.8, consistent with measurements of this ratio for other M-supergiants, but significantly lower than previously estimated for VY CMa from observations of lower-J lines. The spectral line energy distribution for 20 SiO rotational lines shows two temperature components: a hot component at ∼1000 K, which we attribute to the stellar atmosphere and inner wind, plus a cooler ∼200 K component, which we attribute to an origin in the outer circumstellar envelope. We fit the line fluxes of 12CO, 13CO, H2O and SiO, using the smmol non-local thermodynamic equilibrium (LTE) line transfer code, with a mass-loss rate of 1.85 × 10−4 M⊙ yr−1 between 9R* and 350R*. We also fit the observed line fluxes of 12CO, 13CO, H2O and SiO with smmol non-LTE line radiative transfer code, along with a mass-loss rate of 1.85 × 10−4 M⊙ yr−1. To fit the high rotational lines of CO and H2O, the model required a rather flat temperature distribution inside the dust condensation radius, attributed to the high H2O opacity. Beyond the dust condensation radius the gas temperature is fitted best by an r−0.5 radial dependence, consistent with the coolant lines becoming optically thin. Our H2O emission-line fits are consistent with an ortho:para ratio of 3 in the outflow.

[1]  N. Scoville,et al.  OH-IR stars. I. Physical properties of circumstellar envelopes , 1976 .

[2]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[3]  On the origin of the grain-size spectrum of interstellar dust , 1980 .

[4]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[5]  A. Sauval,et al.  A set of partition functions and equilibrium constants for 300 diatomic molecules of astrophysical interest , 1984 .

[6]  P. Goldsmith,et al.  HCN emission from OH infrared sources , 1985, Nature.

[7]  G. B. Scharmer,et al.  A new approach to multi-level non-LTE radiative transfer problems , 1985 .

[8]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.

[9]  G. Thomas Infrared Astronomical Satellite (IRAS). , 1986 .

[10]  M. Schenewerk,et al.  Detection of hydrogen cyanide emission from the peculiar oxygen–rich evolved star IRC + 10420 , 1986, Nature.

[11]  C. Beichman,et al.  Infrared Astronomical Satellite (IRAS) catalogs and atlases , 1988 .

[12]  P. J. Huggins,et al.  The photodissociation of CO in circumstellar envelopes , 1988 .

[13]  W. D. Watson,et al.  Interacting masers and the extreme brightness of astrophysical water masers , 1989 .

[14]  M. Rowan-Robinson,et al.  Radiative transfer in axisymmetric dust clouds , 1990, Monthly Notices of the Royal Astronomical Society.

[15]  S. Deguchi,et al.  H2O emission from evolved stars at the far-infrared and submillimeter wavelengths , 1990 .

[16]  G. Melnick,et al.  Excitation of millimeter and submillimeter water masers , 1991 .

[17]  Herbert M. Pickett,et al.  The fitting and prediction of vibration-rotation spectra with spin interactions , 1991 .

[18]  A. D. McLean,et al.  Improved collisional excitation rates for interstellar water. , 1993, The Astrophysical journal. Supplement series.

[19]  S. Langhoff,et al.  A theoretical study of the electric dipole moment function of SiO , 1993 .

[20]  C. Townes,et al.  Characteristics of dust shells around 13 late-type stars. , 1994 .

[21]  K. Menten,et al.  Discovery of Strong Vibrationally Excited Water Masers at 658 GHz toward Evolved Stars , 1995 .

[22]  A. Tielens,et al.  Organic molecules in oxygen-rich circumstellar envelopes: methanol and hydrocarbons , 1995 .

[23]  M. Kaufman,et al.  Far-Infrared Water Emissions from Magnetohydrodynamic Shock Waves , 1996 .

[24]  J. Yates,et al.  NON-LOCAL RADIATIVE TRANSFER FOR MOLECULES : MODELLING POPULATION INVERSIONS IN WATER MASERS , 1997 .

[25]  J. Yates,et al.  High-frequency SiO masers in long-period variable stars , 1997 .

[26]  D. Neufeld,et al.  Models for Dense Molecular Cloud Cores , 1997, astro-ph/9707171.

[27]  J. Yates,et al.  MERLIN observations of water maser proper motions in VY Canis Majoris , 1998 .

[28]  Observatoire de la Cote d'Azur,et al.  The last gasps of VY Canis Majoris: Aperture synthesis and adaptive optics imagery , 1998 .

[29]  P. Goldsmith,et al.  Population Diagram Analysis of Molecular Line Emission , 1999 .

[30]  J. Rawlings,et al.  Modelling line profiles in infalling cores , 2001 .

[31]  T. Onaka,et al.  The time variation in infrared water-vapour bands in Mira variables , 2002, astro-ph/0201084.

[32]  K. Leuven,et al.  Mass loss and rotational CO emission from Asymptotic Giant Branch stars , 2003, astro-ph/0305207.

[33]  S. Price,et al.  A Uniform Database of 2.4-45.4 Micron Spectra from the Infrared Space Observatory Short Wavelength Spectrometer , 2003 .

[34]  H. Bischof,et al.  The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory , 2010, 1005.1487.

[35]  C. Kramer,et al.  The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) , 2005, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[36]  P. J. Storey,et al.  The dusty MOCASSIN: fully self-consistent 3D photoionization and dust radiative transfer models , 2005, astro-ph/0507050.

[37]  Holger S. P. Müller,et al.  The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists , 2005 .

[38]  C. Balança,et al.  Rotational excitation of SiO by collisions with helium , 2006 .

[39]  A. de Koter,et al.  Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles - I. Theoretical model – Mass-loss history unravelled in VY CMa , 2006, astro-ph/0606299.

[40]  S. Kwok,et al.  The Molecular Envelope around the Red Supergiant VY CMa , 2006, astro-ph/0611547.

[41]  K. Menten,et al.  Submillimeter vibrationally excited water emission from the peculiar red supergiant VY Canis Majoris , 2006, astro-ph/0606057.

[42]  J. Tennyson,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[43]  N. Woolf,et al.  Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris , 2007, Nature.

[44]  Terry J. Jones,et al.  The Three-Dimensional Morphology of VY Canis Majoris. I. The Kinematics of the Ejecta* , 2007 .

[45]  David A. Naylor,et al.  Apodizing functions for Fourier transform spectroscopy , 2007 .

[46]  S. Sakai,et al.  Distance to VY Canis Majoris with VERA , 2008, 0808.0641.

[47]  E. Josselin,et al.  Collisional excitation of water in warm astrophysical media - I. Rate coefficients for rovibrationally excited states , 2008 .

[48]  K. Menten,et al.  A multi-transition submillimeter water maser study of evolved stars. Detection of a new line near 475 GHz , 2007, 0710.5225.

[49]  N. Woolf,et al.  CIRCUMSTELLAR 12C/13C ISOTOPE RATIOS FROM MILLIMETER OBSERVATIONS OF CN AND CO: MIXING IN CARBON- AND OXYGEN-RICH STARS , 2008 .

[50]  N. Woolf,et al.  CARBON CHEMISTRY IN THE ENVELOPE OF VY CANIS MAJORIS: IMPLICATIONS FOR OXYGEN-RICH EVOLVED STARS , 2009 .

[51]  G. Mcintosh,et al.  Evidence for Stable v = 0, j = 1 → 0 SiO Maser Emission from VY Canis Majoris , 2009 .

[52]  N. Woolf,et al.  THE ARIZONA RADIO OBSERVATORY 1 mm SPECTRAL SURVEY OF IRC +10216 AND VY CANIS MAJORIS (215–285 GHz) , 2010 .

[53]  K. Menten,et al.  Polarisation observations of VY Canis Majoris H2O 532–441 620.701 GHz maser emission with HIFI , 2010, 1007.0905.

[54]  K. Menten,et al.  Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: derivation of mass-loss rate formulae , 2010, 1008.1083.

[55]  M. Barlow,et al.  Chemical and radiative transfer modelling of the ISO-LWS Fabry-Perot spectra of Orion-KL water lines , 2010, 1002.2111.

[56]  D. Witherick,et al.  Herschel -SPIRE FTS spectroscopy of the carbon-rich objects AFGL 2688, AFGL 618, and NGC 7027 , 2010, 1005.3279.

[57]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[58]  R. C. Forrey,et al.  ROTATIONAL QUENCHING OF CO DUE TO H2 COLLISIONS , 2010, 1004.3923.

[59]  K. Menten,et al.  Herschel/HIFI deepens the circumstellar NH3 enigma , 2010, 1007.1413.

[60]  K. Menten,et al.  The ISO Long Wavelength Spectrometer line spectrum of VY Canis Majoris and other oxygen-rich evolved stars , 2009, 0912.1626.

[61]  Robert Mann,et al.  Astronomical Data Analysis Software and Systems XXI , 2012 .

[62]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[63]  Kevin Xu,et al.  The data processing pipelines for the Herschel/SPIRE imaging Fourier transform spectrometer , 2010, Astronomical Telescopes + Instrumentation.

[64]  Michael J. Ireland,et al.  Dynamical opacity-sampling models of Mira variables – II. Time-dependent atmospheric structure and observable properties of four M-type model series , 2011, 1107.3619.

[65]  O. Krause,et al.  MESS (Mass-loss of Evolved StarS), a Herschel key program , 2010, 1012.2701.

[66]  K. Menten,et al.  Herschel/HIFI observations of O-rich AGB stars : molecular inventory ⋆ , 2011, 1111.5156.

[67]  K. Menten,et al.  Pure rotational spectra of TiO and TiO2 in VY Canis Majoris , 2013, 1301.4344.