Simulated evolution assembles more realistic food webs with more functionally similar species than invasion

[1]  B. Drossel,et al.  The concerted emergence of well-known spatial and temporal ecological patterns in an evolutionary food web model in space , 2019, Scientific Reports.

[2]  D. Vitt,et al.  Experimental nitrogen addition alters structure and function of a boreal bog: critical load and thresholds revealed , 2019, Ecological Monographs.

[3]  Paulo R. Guimarães,et al.  A Network Perspective for Community Assembly , 2019, Front. Ecol. Evol..

[4]  Jonathan M. Levine,et al.  Effects of rapid evolution on species coexistence , 2019, Proceedings of the National Academy of Sciences.

[5]  Mark A. McPeek,et al.  Mechanisms influencing the coexistence of multiple consumers and multiple resources: resource and apparent competition , 2018, Ecological Monographs.

[6]  Neo D. Martinez,et al.  Species traits and network structure predict the success and impacts of pollinator invasions , 2018, Nature Communications.

[7]  Neo D. Martinez,et al.  Robustness Trade-Offs in Model Food Webs: Invasion Probability Decreases While Invasion Consequences Increase With Connectance , 2017 .

[8]  Neo D. Martinez,et al.  Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. , 2016, Ecology letters.

[9]  Neo D. Martinez,et al.  Fishing-induced life-history changes degrade and destabilize harvested ecosystems , 2016, Scientific Reports.

[10]  M. C. Urban,et al.  Evolving Perspectives on Monopolization and Priority Effects. , 2016, Trends in ecology & evolution.

[11]  U. Dieckmann,et al.  Interim Report IR-12-025 Modeling the ecology and evolution of communities : A review of past achievements , current efforts , and future promises , 2016 .

[12]  B. Vanschoenwinkel,et al.  Rapid evolution of thermal tolerance in the water flea Daphnia , 2015 .

[13]  G. Mittelbach,et al.  Ecological and evolutionary perspectives on community assembly. , 2015, Trends in ecology & evolution.

[14]  B. Drossel,et al.  Evolutionary food web model based on body masses gives realistic networks with permanent species turnover , 2014, Scientific Reports.

[15]  Eva Marie Weiel,et al.  On the interplay of speciation and dispersal: an evolutionary food web model in space. , 2014, Journal of theoretical biology.

[16]  Neo D. Martinez,et al.  Effects of trophic similarity on community composition. , 2014, Ecology letters.

[17]  Ulrich Brose,et al.  Unravelling the complex structure of forest soil food webs: higher omnivory and more trophic levels , 2014 .

[18]  Nathan J B Kraft,et al.  Phylogenetic relatedness and the determinants of competitive outcomes. , 2014, Ecology letters.

[19]  Jennifer A. Dunne,et al.  Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction , 2014, Proceedings of the Royal Society B: Biological Sciences.

[20]  Daniel S. Park,et al.  A test of Darwin's naturalization hypothesis in the thistle tribe shows that close relatives make bad neighbors , 2013, Proceedings of the National Academy of Sciences.

[21]  Barbara Drossel,et al.  When do evolutionary food web models generate complex networks? , 2013, Journal of theoretical biology.

[22]  M. C. Urban Evolution mediates the effects of apex predation on aquatic food webs , 2013, Proceedings of the Royal Society B: Biological Sciences.

[23]  Marianne Elias,et al.  Evolutionary History and Ecological Processes Shape a Local Multilevel Antagonistic Network , 2013, Current Biology.

[24]  Rodrigo Ramos-Jiliberto,et al.  Adaptive foraging allows the maintenance of biodiversity of pollination networks , 2013 .

[25]  Jennifer A. Dunne,et al.  Parasites Affect Food Web Structure Primarily through Increased Diversity and Complexity , 2013, PLoS biology.

[26]  Neo D. Martinez,et al.  Mechanistic theory and modelling of complex food-web dynamics in Lake Constance. , 2012, Ecology letters.

[27]  Christina M. Romagosa,et al.  Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park , 2012, Proceedings of the National Academy of Sciences.

[28]  Ulrich Brose,et al.  The susceptibility of species to extinctions in model communities , 2011 .

[29]  J. Wiens The niche, biogeography and species interactions , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  Cyrille Violle,et al.  Phylogenetic limiting similarity and competitive exclusion. , 2011, Ecology letters.

[31]  S. Schreiber,et al.  Why intraspecific trait variation matters in community ecology. , 2011, Trends in ecology & evolution.

[32]  Carl T. Bergstrom,et al.  Evolutionary principles and their practical application , 2011, Evolutionary applications.

[33]  Nicolas Loeuille,et al.  Emergence and maintenance of biodiversity in an evolutionary food-web model , 2011, Theoretical Ecology.

[34]  N. Loeuille Influence of evolution on the stability of ecological communities. , 2010, Ecology letters.

[35]  John-Arvid Grytnes,et al.  Niche conservatism as an emerging principle in ecology and conservation biology. , 2010, Ecology letters.

[36]  R. Shine The Ecological Impact of Invasive Cane Toads (Bufo Marinus) in Australia , 2010, The Quarterly Review of Biology.

[37]  U. Jacob,et al.  Interaction strength, food web topology and the relative importance of species in food webs. , 2010, The Journal of animal ecology.

[38]  N. Loeuille Consequences of adaptive foraging in diverse communities , 2010 .

[39]  Björn C. Rall,et al.  Allometric functional response model: body masses constrain interaction strengths. , 2010, The Journal of animal ecology.

[40]  N. Loeuille,et al.  Emergence of complex food web structure in community evolution models , 2009 .

[41]  B. Enquist,et al.  Advancing the metabolic theory of biodiversity. , 2009, Ecology letters.

[42]  M. Lambert Studies on the growth, structure and abundance of the Mediterranean spur‐thighed tortoise, Tesudo graeca in field populations , 2009 .

[43]  Neo D. Martinez,et al.  Predicting invasion success in complex ecological networks , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[44]  L. Harmon,et al.  Niche Evolution, Trophic Structure, and Species Turnover in Model Food Webs , 2009, The American Naturalist.

[45]  N. Loeuille III.19 Evolution of Communities and Ecosystems , 2009 .

[46]  Neo D. Martinez,et al.  Simple prediction of interaction strengths in complex food webs , 2009, Proceedings of the National Academy of Sciences.

[47]  Ulrich Brose,et al.  Complex food webs prevent competitive exclusion among producer species , 2008, Proceedings of the Royal Society B: Biological Sciences.

[48]  B. Emerson,et al.  Phylogenetic analysis of community assembly and structure over space and time. , 2008, Trends in ecology & evolution.

[49]  K. Whitney,et al.  Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential , 2008 .

[50]  Alan J. McKane,et al.  The robustness of the Webworld model to changes in its structure , 2008 .

[51]  Neo D. Martinez,et al.  Success and its limits among structural models of complex food webs. , 2008, The Journal of animal ecology.

[52]  Neo D. Martinez,et al.  Compilation and Network Analyses of Cambrian Food Webs , 2008, PLoS biology.

[53]  Richard J. Williams,et al.  Effects of network and dynamical model structure on species persistence in large model food webs , 2008, Theoretical Ecology.

[54]  Barbara Drossel,et al.  Emergence of complexity in evolving niche-model food webs. , 2008, Journal of theoretical biology.

[55]  Ulrich Brose,et al.  Food‐web connectance and predator interference dampen the paradox of enrichment , 2008 .

[56]  G. H. Rodda,et al.  The Disappearance of Guam ' s Wildlife , 2008 .

[57]  D. Reznick,et al.  Evolution on ecological time‐scales , 2007 .

[58]  Andrew M. Liebhold,et al.  Invasion speed is affected by geographical variation in the strength of Allee effects. , 2007, Ecology letters.

[59]  A. Rossberg,et al.  Estimating trophic link density from quantitative but incomplete diet data. , 2006, Journal of theoretical biology.

[60]  Neo D. Martinez,et al.  Allometric scaling enhances stability in complex food webs. , 2006, Ecology letters.

[61]  J. E. Byers,et al.  Divergent Induced Responses to an Invasive Predator in Marine Mussel Populations , 2006, Science.

[62]  B. Potts,et al.  A framework for community and ecosystem genetics: from genes to ecosystems , 2006, Nature Reviews Genetics.

[63]  M. McPeek,et al.  Coexistence of the niche and neutral perspectives in community ecology. , 2006, Ecology.

[64]  Jordi Bascompte,et al.  Asymmetric Coevolutionary Networks Facilitate Biodiversity Maintenance , 2006, Science.

[65]  Marten Scheffer,et al.  Self-organized similarity, the evolutionary emergence of groups of similar species. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[66]  A. Rossberg,et al.  Food webs: experts consuming families of experts. , 2005, Journal of theoretical biology.

[67]  Neo D. Martinez,et al.  Scaling up keystone effects from simple to complex ecological networks , 2005 .

[68]  S. Ellner,et al.  Rapid evolution and the convergence of ecological and evolutionary time , 2005 .

[69]  Nicolas Loeuille,et al.  Evolutionary emergence of size-structured food webs. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[70]  T. Case,et al.  The role of introduced species in shaping the distribution and abundance of island reptiles , 1991, Evolutionary Ecology.

[71]  Neo D. Martinez,et al.  Diversity, Complexity, and Persistence in Large Model Ecosystems , 2005 .

[72]  R. Shine,et al.  Adapting to an invasive species: toxic cane toads induce morphological change in Australian snakes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[73]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[74]  Jennifer A. Dunne,et al.  Network structure and robustness of marine food webs , 2004 .

[75]  Martijn Egas,et al.  Evolution Restricts the Coexistence of Specialists and Generalists: The Role of Trade‐off Structure , 2004, The American Naturalist.

[76]  Neo D. Martinez,et al.  Limits to Trophic Levels and Omnivory in Complex Food Webs: Theory and Data , 2004, The American Naturalist.

[77]  Neo D. Martinez,et al.  Stabilization of chaotic and non-permanent food-web dynamics , 2004 .

[78]  Jean-Pierre Gabriel,et al.  Phylogenetic constraints and adaptation explain food-web structure , 2004, Nature.

[79]  Christopher Quince,et al.  Topological structure and interaction strengths in model food webs , 2004, q-bio/0402014.

[80]  Dylan G. Fischer,et al.  COMMUNITY AND ECOSYSTEM GENETICS: A CONSEQUENCE OF THE EXTENDED PHENOTYPE , 2003 .

[81]  Michio Kondoh,et al.  Foraging Adaptation and the Relationship Between Food-Web Complexity and Stability , 2003, Science.

[82]  G. Yohe,et al.  A globally coherent fingerprint of climate change impacts across natural systems , 2003, Nature.

[83]  Neo D. Martinez,et al.  Network structure and biodiversity loss in food webs: robustness increases with connectance , 2002, Ecology Letters.

[84]  B. Grant,et al.  Unpredictable Evolution in a 30-Year Study of Darwin's Finches , 2002, Science.

[85]  S. Strogatz Exploring complex networks , 2001, Nature.

[86]  B. Drossel,et al.  The influence of predator--prey population dynamics on the long-term evolution of food web structure. , 2000, Journal of theoretical biology.

[87]  Neo D. Martinez,et al.  Simple rules yield complex food webs , 2000, Nature.

[88]  P. Yodzis,et al.  In search of operational trophospecies in a tropical aquatic food web , 1999 .

[89]  Bradford A. Hawkins,et al.  EFFECTS OF SAMPLING EFFORT ON CHARACTERIZATION OF FOOD-WEB STRUCTURE , 1999 .

[90]  A. Hastings,et al.  Weak trophic interactions and the balance of nature , 1998, Nature.

[91]  A. Solow,et al.  ON LUMPING SPECIES IN FOOD WEBS , 1998 .

[92]  Caldarelli,et al.  Modelling Coevolution in Multispecies Communities. , 1998, Journal of theoretical biology.

[93]  G. H. Rodda,et al.  The Disappearance of Guam's Wildlife New insights for herpetology, evolutionary ecology, and conservation , 1997 .

[94]  Richard Law,et al.  Regional Species Pools and the Assembly of Local Ecological Communities , 1997 .

[95]  F. H. Rodd,et al.  Evaluation of the Rate of Evolution in Natural Populations of Guppies (Poecilia reticulata) , 1997, Science.

[96]  D. Lodge,et al.  Biological invasions: Lessons for ecology. , 1993, Trends in ecology & evolution.

[97]  P. Yodzis,et al.  Body Size and Consumer-Resource Dynamics , 1992, The American Naturalist.

[98]  Clyde Arthur Morrison,et al.  Theory and Data , 1992 .

[99]  Neo D. Martinez Artifacts or Attributes? Effects of Resolution on the Little Rock Lake Food Web , 1991 .

[100]  N. Hairston,et al.  FLUCTUATING SELECTION AND RESPONSE IN A POPULATION OF FRESHWATER COPEPODS , 1990, Evolution; international journal of organic evolution.

[101]  Thomas W. Schoener,et al.  Food Webs From the Small to the Large: The Robert H. MacArthur Award Lecture , 1989 .

[102]  Joel E. Cohen,et al.  Community food webs have scale-invariant structure , 1984, Nature.

[103]  Richard N. Mack,et al.  Invasion of Bromus tectorum L. into Western North America: An ecological chronicle , 1981 .

[104]  R. Paine Food webs : linkage, interaction strength and community infrastructure , 1980 .

[105]  D. Janzen WHEN IS IT COEVOLUTION? , 1980, Evolution; international journal of organic evolution.

[106]  N. MacDonald Review of "Stability and Complexity in Model Ecosystems" by Robert M. May , 1978, IEEE Trans. Syst. Man Cybern..

[107]  R. Macarthur Growth and Regulation of Animal Population , 1962 .

[108]  C. S. Holling The Components of Predation as Revealed by a Study of Small-Mammal Predation of the European Pine Sawfly , 1959, The Canadian Entomologist.