Performance evaluation of additive TiO2, MWCNT and GNP reinforced particles on Mg AZ31 based matrix composites by friction stir processing

[1]  K. Saxena,et al.  Effect of material positioning on Si-rich TIG welded joints of AA6082 and AA8011 by friction stir processing , 2022, Journal of Adhesion Science and Technology.

[2]  Vinayak R. Malik,et al.  Significance of Alloying Elements on the Mechanical Characteristics of Mg-Based Materials for Biomedical Applications , 2022, Crystals.

[3]  J. Jia,et al.  Dry sliding wear behaviour of AZ31 Magnesium alloy strengthened by nanoscale SiCp , 2021, Journal of Materials Research and Technology.

[4]  S. Kumar Sharma,et al.  An outlook on the influence on mechanical properties of AZ31 reinforced with graphene nanoparticles using powder metallurgy technique for biomedical application , 2021, Materials Today: Proceedings.

[5]  A. Keshtgar,et al.  Tribological behaviour of AZ31 magnesium alloy reinforced by bimodal size B4C after precipitation hardening , 2021, Journal of Magnesium and Alloys.

[6]  M. Elahinia,et al.  Fracture of magnesium matrix nanocomposites - A review , 2021 .

[7]  Yan Ji,et al.  Corrosion resistance and tribological behavior of particles reinforced AZ31 magnesium matrix composites developed by friction stir processing , 2021 .

[8]  C. Wen,et al.  Nano-tribological behavior of graphene nanoplatelet–reinforced magnesium matrix nanocomposites , 2020 .

[9]  K. Nie,et al.  Magnesium matrix composite reinforced by nanoparticles – A review , 2020 .

[10]  G. Song,et al.  Review of Mg alloy corrosion rates , 2020 .

[11]  Y. Mazaheri,et al.  Effect of mono and hybrid ceramic reinforcement particles on the tribological behavior of the AZ31 matrix surface composites developed by friction stir processing , 2020 .

[12]  H. Bakhsheshi‐Rad,et al.  Magnesium-graphene nano-platelet composites: Corrosion behavior, mechanical and biological properties , 2020 .

[13]  A. Salandari-Rabori,et al.  Microstructural evolution and mechanical properties of thermomechanically processed AZ31 magnesium alloy reinforced by micro-graphite and nano-graphene particles , 2020 .

[14]  M. Ansari,et al.  Influence of friction stir processing conditions on corrosion behavior of AZ31B magnesium alloy , 2019 .

[15]  S. Marashi,et al.  Effect of graphene nanoplatelets (GNPs) content on improvement of mechanical and tribological properties of AZ31 Mg matrix nanocomposite , 2019, Tribology International.

[16]  D. K. Dwivedi,et al.  Ductilizing of cast hypereutectic Al–17%Si alloy by friction stir processing , 2018 .

[17]  S. Aravindan,et al.  Development and characterization studies on magnesium alloy (RZ 5) surface metal matrix composites through friction stir processing , 2018, Journal of Magnesium and Alloys.

[18]  D. K. Dwivedi,et al.  Mechanical Properties and Wear Behavior of Zn and MoS2 Reinforced Surface Composite Al- Si Alloys Using Friction Stir Processing , 2018, Silicon.

[19]  B. Sunil,et al.  An investigation on the hardness and corrosion behavior of MWCNT/Mg composites and grain refined Mg , 2018 .

[20]  K. Palanikumar,et al.  Influence of carbon nano tubes on mechanical, metallurgical and tribological behavior of magnesium nanocomposites , 2017 .

[21]  R. S. Mulik,et al.  Estimation of strength and wear properties of Mg/SiC nanocomposite fabricated through FSP route , 2017 .

[22]  R. Mishra,et al.  Effect of friction stir processing on microstructure and mechanical properties of laser-processed Mg4Y3Nd alloy , 2016 .

[23]  Yan Ji,et al.  Microstructure and corrosion resistance of laser cladding and friction stir processing hybrid modification Al-Si coatings on AZ31B , 2016 .

[24]  K. Dehghani,et al.  Fabrication of Mg-ZrO2 surface layer composites by friction stir processing , 2016 .

[25]  H. Patle,et al.  Magnesium based surface metal matrix composites by friction stir processing , 2016 .

[26]  V. Sharma,et al.  Surface composites by friction stir processing: A review , 2015 .

[27]  A. H. Ammouri,et al.  Relating grain size to the Zener-Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing , 2015 .

[28]  Datong Zhang,et al.  Microstructure evolution and mechanical properties of Mg–Nd–Y alloy in different friction stir processing conditions , 2015 .

[29]  M. Sohi,et al.  Taguchi optimization of process parameters in friction stir processing of pure Mg , 2015 .

[30]  J. Jiménez,et al.  Mechanical properties of ultra-fine grained AZ91 magnesium alloy processed by friction stir processing , 2015 .

[31]  I. Dinaharan,et al.  Synthesize of AZ31/TiC magnesium matrix composites using friction stir processing , 2015 .

[32]  A. Kokabi,et al.  Cryogenic friction-stir processing of ultrafine-grained Al–Mg–TiO2 nanocomposites , 2015 .

[33]  V. Balasubramanian,et al.  Effect of shoulder diameter to pin diameter (D/d) ratio on tensile strength and ductility of friction stir processed LM25AA-5% SiCp metal matrix composites , 2014 .

[34]  H. Singh,et al.  Wear behaviour of a Mg alloy subjected to friction stir processing , 2013 .

[35]  Basil M. Darras,et al.  Submerged friction stir processing of AZ31 Magnesium alloy , 2013 .

[36]  H. Singh,et al.  Parametric Study of Friction Stir Processing of Magnesium-Based AE42 Alloy , 2012, Journal of Materials Engineering and Performance.

[37]  H. Singh,et al.  Some Observations on Microstructural Changes in a Mg-Based AE42 Alloy Subjected to Friction Stir Processing , 2012, Metallurgical and Materials Transactions B.

[38]  C. Prakash,et al.  Manufacturing Techniques for Mg-Based Metal Matrix Composite with Different Reinforcements , 2022 .

[39]  N. Jain,et al.  Microstructure, mechanical and corrosion behaviour of friction stir welding of AA6061 Al alloy and AZ31B Mg alloy , 2022, Metallurgical Research & Technology.