Second Harmonic Generation, a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide
暂无分享,去创建一个
Pierre-François Brevet | Christian Jonin | Isabelle Russier-Antoine | Emmanuel Benichou | Guillaume Bachelier | Gladys Matar | Françoise Besson | Damien Ficheux | Julien Duboisset | D. Ficheux | P. Brevet | G. Bachelier | E. Benichou | C. Jonin | F. Besson | G. Matar | J. Duboisset | I. Russier-Antoine
[1] Volker Brass,et al. Structure and Function of the Membrane Anchor Domain of Hepatitis C Virus Nonstructural Protein 5A* , 2004, Journal of Biological Chemistry.
[2] K. Brogden. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? , 2005, Nature Reviews Microbiology.
[3] Thierry Buffeteau,et al. Polarization Modulation FT-IR Spectroscopy of Surfaces and Ultra-Thin Films: Experimental Procedure and Quantitative Analysis , 1991 .
[4] H. Vogel,et al. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. , 2006, Biochimica et biophysica acta.
[5] E. Hunter,et al. A Conserved Tryptophan-Rich Motif in the Membrane-Proximal Region of the Human Immunodeficiency Virus Type 1 gp41 Ectodomain Is Important for Env-Mediated Fusion and Virus Infectivity , 1999, Journal of Virology.
[6] Douglas J. Moffatt,et al. Second-harmonic generation optical activity of a polypeptide α-helix at the air∕water interface , 2005 .
[7] B. Desbat,et al. Investigations at the air/water interface using polarization modulation IR spectroscopy , 1996 .
[8] H. Girault,et al. Second harmonic generation of glucose oxidase at the air/water interface. , 1999, Biophysical journal.
[9] Volker Brass,et al. An Amino-terminal Amphipathic α-Helix Mediates Membrane Association of the Hepatitis C Virus Nonstructural Protein 5A* , 2002, The Journal of Biological Chemistry.
[10] F. Besson,et al. Interactions of the natural antimicrobial mycosubtilin with phospholipid membrane models. , 2010, Colloids and surfaces. B, Biointerfaces.
[11] H. Vogel,et al. Thermodynamics of the interactions of tryptophan-rich cathelicidin antimicrobial peptides with model and natural membranes. , 2008, Biochimica et biophysica acta.
[12] B. Desbat,et al. Polarization modulation FTIR spectroscopy at the air-water interface , 1994 .
[13] Yaochun Shen. Principles of nonlinear optics , 1984 .
[14] K. Eisenthal,et al. Liquid Interfaces Probed by Second-Harmonic and Sum-Frequency Spectroscopy. , 1996, Chemical reviews.
[15] M. Laguerre,et al. Structure, orientation and affinity for interfaces and lipids of ideally amphipathic lytic LiKj(i=2j) peptides. , 1999, Biochimica et biophysica acta.
[16] Daniel A. Higgins,et al. Optical second harmonic generation as a probe of surface chemistry , 1994 .
[17] R. Koeppe,et al. Helical distortion in tryptophan- and lysine-anchored membrane-spanning alpha-helices as a function of hydrophobic mismatch: a solid-state deuterium NMR investigation using the geometric analysis of labeled alanines method. , 2008, Biophysical journal.
[18] R. Jelinek,et al. Microscopic visualization of alamethicin incorporation into model membrane monolayers. , 2004, Langmuir : the ACS journal of surfaces and colloids.
[19] Isabelle Russier-Antoine,et al. Compression Induced Chirality in Dense Molecular Films at the Air−Water Interface Probed by Second Harmonic Generation , 2008 .
[20] S. Mitchell. Origin of second harmonic generation optical activity of a tryptophan derivative at the air/water interface. , 2006, The Journal of chemical physics.
[21] B. Desbat,et al. Structure and orientation study of fusion peptide FP23 of gp41 from HIV-1 alone or inserted into various lipid membrane models (mono-, bi- and multibi-layers) by FT-IR spectroscopies and Brewster angle microscopy. , 2005, Biochimica et biophysica acta.