Essentials of Glycobiology

General principles - historical background and overview saccharide structure and nomenclature evolution of glycan diversity protein-glycan Interactions exploring the biological roles of glycans biosynthesis, metabolism, and function - monosaccharide metabolism N-glycans O-glycans glycosphingolipids glycophospholipid anchors proteoglycans and glycosaminoglycans other classes of golgi-derived glycans nuclear and cytoplasmic glycosylation the O-GlcNAc modification sialic acids structures common to different types of glycans glycosyltransferases degradation and turnover of glycans glycosylation in "model" organisms glycobiology of plant cells bacterial polysaccharides proteins that recognize glycans - discovery and classification of animal lectins P-type lectins I-type lectins C-type lectins selectins S-type lectins (galectins) microbial glycan-binding proteins glycosaminoglycan-binding proteins plant lectins glycans in genetic disorders and disease - genetic disorders of glycosylation in cultured cells naturally occurring genetic disorders of glycosylation in animals determining glycan function using genetically modified mice glycosylation changes in ontogeny and cell activation glycosylation changes in cancer glycobiology of protozoal and helminthic parasites acquired glycosylation changes in human disease methods and applications - structural analysis and sequencing of glycans chemical and enzymatic synthesis of glycans natural and synthetic inhibitors of glycosylation glycobiology in biotechnology and medicine.

[1]  S. Kelm,et al.  Sialic Acids in Molecular and Cellular Interactions , 1997, International Review of Cytology.

[2]  R. Schauer,et al.  Structure, function and metabolism of sialic acids , 1998, Cellular and Molecular Life Sciences CMLS.

[3]  J. Kamerling,et al.  Chemistry, biochemistry and biology of sialic acids☆ , 1997, New Comprehensive Biochemistry.