Financial prediction using modified probabilistic learning network with embedded local linear models

In this paper, a model is proposed which combines multiple local linear models with a novel modified probabilistic neural network (MPNN). The proposed model is shown to provide improved regularization with reduced computation utilizing semiparametric model approach and efficient vector quantization of data space. In this paper, the proposed model is shown to generalize better with reduced variance and model complexity in short-term financial prediction application.

[1]  James S. Albus,et al.  New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC)1 , 1975 .

[2]  Tony Jan,et al.  An adjustable model for linear to nonlinear regression , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[3]  Philip Hans Franses,et al.  Modeling Multiple Regimes in the Business Cycle , 1999, Macroeconomic Dynamics.

[4]  E. Nadaraya On Estimating Regression , 1964 .

[5]  David H. Wolpert,et al.  On Bias Plus Variance , 1997, Neural Computation.

[6]  Eduard Aved’yan,et al.  The Cerebellar Model Articulation Controller (CMAC) , 1995 .

[7]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[8]  Marcelo C. Medeiros,et al.  A hybrid linear-neural model for time series forecasting , 2000, IEEE Trans. Neural Networks Learn. Syst..

[9]  Jiti Gao,et al.  M-TYPE SMOOTHING SPLINES IN NONPARAMETRIC AND SEMIPARAMETRIC REGRESSION MODELS , 1997 .

[10]  Y. Nakamori,et al.  Identification of Fuzzy Prediction Models Through Hyperellipsoidal Clustering , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[11]  H. Tong,et al.  ON ESTIMATING THRESHOLDS IN AUTOREGRESSIVE MODELS , 1986 .

[12]  Howell Tong,et al.  Threshold autoregression, limit cycles and cyclical data- with discussion , 1980 .

[13]  Gonzalo R. Arce,et al.  Piecewise linear system modeling based on a continuous threshold decomposition , 1996, IEEE Trans. Signal Process..

[14]  H. Tong On a threshold model , 1978 .

[15]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[16]  H. Tong,et al.  Threshold Autoregression, Limit Cycles and Cyclical Data , 1980 .

[17]  Bruce W. Schmeiser,et al.  Improving model accuracy using optimal linear combinations of trained neural networks , 1995, IEEE Trans. Neural Networks.

[18]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[19]  Anthony Zaknich,et al.  A practical sub-space adaptive filter , 2003, Neural Networks.

[20]  Anthony Zaknich,et al.  Introduction to the modified probabilistic neural network for general signal processing applications , 1998, IEEE Trans. Signal Process..