Reinforcement Quantum Annealing: A Hybrid Quantum Learning Automata

We introduce the notion of reinforcement quantum annealing (RQA) scheme in which an intelligent agent searches in the space of Hamiltonians and interacts with a quantum annealer that plays the stochastic environment role of learning automata. At each iteration of RQA, after analyzing results (samples) from the previous iteration, the agent adjusts the penalty of unsatisfied constraints and re-casts the given problem to a new Ising Hamiltonian. As a proof-of-concept, we propose a novel approach for casting the problem of Boolean satisfiability (SAT) to Ising Hamiltonians and show how to apply the RQA for increasing the probability of finding the global optimum. Our experimental results on two different benchmark SAT problems (namely factoring pseudo-prime numbers and random SAT with phase transitions), using a D-Wave 2000Q quantum processor, demonstrated that RQA finds notably better solutions with fewer samples, compared to the best-known techniques in the realm of quantum annealing.

[1]  Hidetoshi Nishimori,et al.  Exponential Enhancement of the Efficiency of Quantum Annealing by Non-Stoquastic Hamiltonians , 2016, Frontiers ICT.

[2]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[3]  Erio Tosatti,et al.  Quantum to classical and back , 2007 .

[4]  David R. Cox,et al.  The Theory of Stochastic Processes , 1967, The Mathematical Gazette.

[5]  R. Biswas,et al.  A quantum annealing approach for fault detection and diagnosis of graph-based systems , 2014, The European Physical Journal Special Topics.

[6]  Jérémie Roland,et al.  Anderson localization makes adiabatic quantum optimization fail , 2009, Proceedings of the National Academy of Sciences.

[7]  Feng Hu,et al.  Factoring larger integers with fewer qubits via quantum annealing with optimized parameters , 2019, Science China Physics, Mechanics & Astronomy.

[8]  A. Ramezanpour,et al.  Enhancing the efficiency of quantum annealing via reinforcement: A path-integral Monte Carlo simulation of the quantum reinforcement algorithm , 2018, Physical Review A.

[9]  Bart Selman,et al.  Generating Satisfiable Problem Instances , 2000, AAAI/IAAI.

[10]  Steven H. Adachi,et al.  Application of Quantum Annealing to Training of Deep Neural Networks , 2015, ArXiv.

[11]  John E. Dorband,et al.  Extending the D-Wave with support for Higher Precision Coefficients , 2018, ArXiv.

[12]  Masayuki Ohzeki,et al.  Quantum annealing: An introduction and new developments , 2010, 1006.1696.

[13]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[14]  Gary J. Mooney,et al.  Mapping NP-Hard Problems to Restricted Adiabatic Quantum Architectures , 2019 .

[15]  Daniel A. Lidar,et al.  Non-stoquastic Hamiltonians in quantum annealing via geometric phases , 2017, npj Quantum Information.

[16]  Tim Finin,et al.  Quantum-Assisted Greedy Algorithms , 2019 .

[17]  Felip Manyà,et al.  Clausal Form Transformation in MaxSAT , 2019, 2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL).

[18]  J. Straub,et al.  Global energy minimum searches using an approximate solution of the imaginary time Schroedinger equation , 1993 .

[19]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[20]  Timothy W. Finin,et al.  Quantum Annealing Based Binary Compressive Sensing with Matrix Uncertainty , 2019, ArXiv.

[21]  Rupak Biswas,et al.  A NASA perspective on quantum computing: Opportunities and challenges , 2017, Parallel Comput..

[22]  Hector J. Levesque,et al.  Generating Hard Satisfiability Problems , 1996, Artif. Intell..

[23]  Daniel O'Malley,et al.  Pre- and post-processing in quantum-computational hydrologic inverse analysis , 2019, ArXiv.

[24]  Daniel A. Lidar,et al.  Quantum annealing correction for random Ising problems , 2014, 1408.4382.

[25]  Lucas Lamata,et al.  Basic protocols in quantum reinforcement learning with superconducting circuits , 2017, Scientific Reports.

[26]  Ramin Ayanzadeh,et al.  A Survey on Compressive Sensing: Classical Results and Recent Advancements , 2019, ArXiv.

[27]  Shinichiro Taguchi,et al.  Improving solutions by embedding larger subproblems in a D-Wave quantum annealer , 2019, Scientific Reports.

[28]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[29]  Hristo Djidjev,et al.  Optimizing the Spin Reversal Transform on the D-Wave 2000Q , 2019, 2019 IEEE International Conference on Rebooting Computing (ICRC).

[30]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[31]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[32]  Aidan Roy,et al.  Discrete optimization using quantum annealing on sparse Ising models , 2014, Front. Phys..

[33]  Raouf Dridi,et al.  Prime factorization using quantum annealing and computational algebraic geometry , 2016, Scientific Reports.

[34]  D. Venturelli,et al.  Quantum Annealing Implementation of Job-Shop Scheduling , 2015, 1506.08479.

[35]  Velimir V. Vesselinov,et al.  Nonnegative/Binary matrix factorization with a D-Wave quantum annealer , 2017, PloS one.

[36]  Kannan Balasubramanian,et al.  Integer Factoring Algorithms , 2018 .

[37]  Yoav Shoham,et al.  Understanding Random SAT: Beyond the Clauses-to-Variables Ratio , 2004, CP.

[38]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[39]  Tim Finin,et al.  An Ensemble Approach for Compressive Sensing with Quantum Annealers , 2020, IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium.

[40]  Erio Tosatti,et al.  Quantum annealing by the path-integral Monte Carlo method: The two-dimensional random Ising model , 2002 .

[41]  Masayuki Ohzeki,et al.  Control of Automated Guided Vehicles Without Collision by Quantum Annealer and Digital Devices , 2018, Front. Comput. Sci..

[42]  J. Christopher Beck,et al.  A Hybrid Quantum-Classical Approach to Solving Scheduling Problems , 2016, SOCS.

[43]  Amir Khoshaman,et al.  A path towards quantum advantage in training deep generative models with quantum annealers , 2019, Mach. Learn. Sci. Technol..

[44]  Aidan Roy,et al.  Next-Generation Topology of D-Wave Quantum Processors , 2020, 2003.00133.

[45]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[46]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[47]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[48]  Kumpati S. Narendra,et al.  Learning automata - an introduction , 1989 .

[49]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[50]  Timothy W. Finin,et al.  SAT-based Compressive Sensing , 2019, ArXiv.

[51]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[52]  Aidan Roy,et al.  Mapping Constrained Optimization Problems to Quantum Annealing with Application to Fault Diagnosis , 2016, Front. ICT.

[53]  Bryan O'Gorman,et al.  A case study in programming a quantum annealer for hard operational planning problems , 2014, Quantum Information Processing.

[54]  Thomas Stützle,et al.  SATLIB: An Online Resource for Research on SAT , 2000 .

[55]  Aidan Roy,et al.  Solving SAT and MaxSAT with a Quantum Annealer: Foundations and a Preliminary Report , 2017, FroCoS.

[56]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[57]  John E. Dorband,et al.  A Method of Finding a Lower Energy Solution to a QUBO/Ising Objective Function , 2018, ArXiv.

[58]  Scott Pakin,et al.  Embedding Inequality Constraints for Quantum Annealing Optimization , 2019, QTOP@NetSys.

[59]  Catherine C. McGeoch,et al.  Theory versus practice in annealing-based quantum computing , 2020, Theor. Comput. Sci..

[60]  Cesare Tinelli,et al.  Handbook of Satisfiability , 2021, Handbook of Satisfiability.

[61]  Daniel A. Lidar,et al.  Non-stoquastic Hamiltonians in quantum annealing via geometric phases , 2017 .

[62]  Lei He,et al.  A quantum annealing approach for Boolean Satisfiability problem , 2016, 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC).

[63]  Ray,et al.  Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations. , 1989, Physical review. B, Condensed matter.

[64]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[65]  Leonardo Mendonça de Moura,et al.  The Strategy Challenge in SMT Solving , 2013, Automated Reasoning and Mathematics.

[66]  Hristo Djidjev,et al.  Simple Constraint Embedding for Quantum Annealers , 2018, 2018 IEEE International Conference on Rebooting Computing (ICRC).

[67]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[68]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[69]  Aidan Roy,et al.  A practical heuristic for finding graph minors , 2014, ArXiv.