Cataractogenesis In Retinitis Pigmentosa

[1]  M. V. van Boekel,et al.  Glycation of crystalline in lenses from aging and diabetic individuals , 1992, FEBS letters.

[2]  V. Monnier,et al.  High correlation between pentosidine protein crosslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. V. van Boekel,et al.  Glycation-induced crosslinking of calf lens crystallins. , 1991, Experimental eye research.

[4]  K. Yamaguchi,et al.  Corneal endothelial abnormalities in the Royal College of Surgeons rat. , 1990, Cornea.

[5]  M. Lou,et al.  The role of protein-thiol mixed disulfides in cataractogenesis. , 1990, Experimental eye research.

[6]  D. Garland,et al.  Role of site-specific, metal-catalyzed oxidation in lens aging and cataract: a hypothesis. , 1990, Experimental eye research.

[7]  S. Savastano,et al.  Lipid peroxidation and human cataractogenesis in diabetes and severe myopia. , 1989, Experimental eye research.

[8]  D. Newsome,et al.  Detection of lymphocytes in the vitreous gel of patients with retinitis pigmentosa. , 1988, American journal of ophthalmology.

[9]  D. Garland,et al.  Structural changes in bovine lens crystallins induced by ascorbate, metal, and oxygen. , 1986, Archives of biochemistry and biophysics.

[10]  S. Podos,et al.  Lipid peroxidation in cataract of the human. , 1986, Life sciences.

[11]  G. Fishman,et al.  Prevalence of posterior subcapsular lens opacities in patients with retinitis pigmentosa. , 1985, The British journal of ophthalmology.

[12]  J D Goosey,et al.  A lipid peroxidative mechanism for posterior subcapsular cataract formation in the rabbit: a possible model for cataract formation in tapetoretinal diseases. , 1984, Investigative ophthalmology & visual science.

[13]  D. K. Bhuyan,et al.  Molecular mechanism of cataractogenesis: III. Toxic metabolites of oxygen as initiators of lipid peroxidation and cataract. , 1984, Current eye research.

[14]  I. Gery,et al.  Effects of lipid peroxidation products on the rat lens in organ culture: a possible mechanism of cataract initiation in retinal degenerative disease. , 1983, Archives of biochemistry and biophysics.

[15]  J. Heckenlively,et al.  The frequency of posterior subcapsular cataract in the hereditary retinal degenerations. , 1982, American journal of ophthalmology.

[16]  J. Eshagian Human posterior subcapsular cataracts. , 1982, Transactions of the ophthalmological societies of the United Kingdom.

[17]  N. Rafferty,et al.  Ultrastructure of human cataract in retinitis pigmentosa. , 1980, Archives of ophthalmology.

[18]  C. Ohrloff,et al.  Ageing of Lens Metabolism , 1979 .

[19]  Kastrup. Knud W et al Federation of European biochemical societies , 2004 .

[20]  J. Bellows Cataract and abnormalities of the lens , 1976 .

[21]  E. Cotlier,et al.  Effects of lysophosphatidyl choline and phospholipase A on the lens. , 1975, Investigative ophthalmology.

[22]  P. Niesel Spaltlampenphotographie der Linse für Messzwecke , 1966 .

[23]  S. Duke-Elder System of Ophthalmology , 1962 .