Equal coefficients and tolerance in coloured Tverberg partitions

The coloured Tverberg theorem was conjectured by Bárány, Lovász and Füredi [4] and asks whether for any d+1 sets (considered as colour classes) of k points each in ℝd there is a partition of them into k colourful sets whose convex hulls intersect. This is known when d=1;2 [5] or k+1 is prime [7]. In this paper we show that (k−1)d+1 colour classes are necessary and sufficient if the coefficients in the convex combination in the colourful sets are required to be the same in each class. This result is actually a generalisation of Tverberg’s classic theorem on the intersection of convex hulls [27]. We also examine what happens if we want the convex hulls of the colourful sets to intersect even if we remove any r of the colour classes, and its relation to other colourful variants of Tverberg’s theorem. We investigate the relation of the case k=2 and the Gale transform, obtaining a variation of the coloured Radon theorem. We then show applications of these results to purely combinatorial problems.

[1]  E. R. Kampen Komplexe in euklidischen Räumen , 1933 .

[2]  D. Falikman Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix , 1981 .

[3]  Bernt Lindström A Theorem on Families of Sets , 1972, J. Comb. Theory, Ser. A.

[4]  J. Matousek,et al.  Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry , 2007 .

[5]  D. G. Larman On Sets Projectively Equivalent to the Vertices of a Convex Polytope , 1972 .

[6]  Jirí Matousek,et al.  A Geometric Proof of the Colored Tverberg Theorem , 2012, Discret. Comput. Geom..

[7]  Stephan Hell On the number of Tverberg partitions in the prime power case , 2007, Eur. J. Comb..

[8]  Zoltán Füredi,et al.  On the number of halving planes , 1989, SCG '89.

[9]  Imre Bárány,et al.  A generalization of carathéodory's theorem , 1982, Discret. Math..

[10]  K. S. Sarkaria A generalized van Kampen-Flores theorem , 1991 .

[11]  Stephan Hell,et al.  Tverberg's theorem with constraints , 2007, J. Comb. Theory, Ser. A.

[12]  Pablo Soberón,et al.  A Generalisation of Tverberg’s Theorem , 2012, Discret. Comput. Geom..

[13]  Pavle V. M. Blagojevi'c,et al.  Optimal bounds for the colored Tverberg problem , 2009, 0910.4987.

[14]  J. Radon Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .

[15]  Sinisa T. Vrecica,et al.  Chessboard complexes indomitable , 2009, J. Comb. Theory, Ser. A.

[16]  H. Tverberg A Generalization of Radon's Theorem , 1966 .

[17]  I. Bárány,et al.  A Colored Version of Tverberg's Theorem , 1992 .

[18]  Mark de Longueville Notes on the topological Tverberg theorem , 2001, Discret. Math..

[19]  Benjamin Matschke,et al.  Optimal bounds for a colorful Tverberg--Vrecica type problem , 2009, 0911.2692.

[20]  G. Egorychev The solution of van der Waerden's problem for permanents , 1981 .

[21]  K. S. Sarkaria Tverberg’s theorem via number fields , 1992 .

[22]  Luis Pedro Montejano,et al.  Tolerance in Helly-Type Theorems , 2011, Discret. Comput. Geom..

[23]  M. Longueville Erratum to Notes on the topological Tverberg theorem [Discrete Math. 241(2001)207-233] , 2002 .

[24]  J. Matousek,et al.  Using The Borsuk-Ulam Theorem , 2007 .

[25]  Rade T. Zivaljevic,et al.  Note on a conjecture of sierksma , 1993, Discret. Comput. Geom..

[26]  Ruy Fabila Monroy,et al.  Very Colorful Theorems , 2009, Discret. Comput. Geom..

[27]  Jürgen Eckhoff,et al.  The partition conjecture , 2000, Discrete Mathematics.

[28]  I Barany,et al.  A GENERALIZATION OF CARATHEODORYS THEOREM , 1982 .

[29]  Sinisa T. Vrecica,et al.  The Colored Tverberg's Problem and Complexes of Injective Functions , 1992, J. Comb. Theory A.