Secondary Conservative Finite Difference Schemes for Moving Grids
暂无分享,去创建一个
Yohei Morinishi | Kazuki Koga | Masanari Numata | Naoki Kobayashi | K. Koga | Yohei Morinishi | Naoki Kobayashi | Masanari Numata
[1] M. Carpenter,et al. Fourth-order 2N-storage Runge-Kutta schemes , 1994 .
[2] Jean-Yves Trépanier,et al. Discrete form of the GCL for moving meshes and its implementation in CFD schemes , 1993 .
[3] Youhei Morinishi. Forms of Convection and Quadratic Conservative Finite Difference Schemes for Low-Mach Number Compressible Flow Simulations(Fluids Engineering) , 2007 .
[4] Yousef Saad,et al. Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..
[5] J. Steger,et al. Implicit Finite-Difference Simulations of Three-Dimensional Compressible Flow , 1980 .
[6] P. Moin,et al. Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow , 1998 .
[7] M. Vinokur,et al. An analysis of finite-difference and finite-volume formulations of conservation laws , 1986 .
[8] 洋平 森西. 非圧縮性流体解析における差分スキームの保存特性 : 第1報, 解析的要求事項, 離散オペレータの定義, レギュラ格子系の差分スキーム , 1996 .
[9] Yohei Morinishi,et al. Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows , 2010, J. Comput. Phys..
[10] P. Thomas,et al. Geometric Conservation Law and Its Application to Flow Computations on Moving Grids , 1979 .
[11] Yohei Morinishi,et al. Hybrid Schemes of Shock Capturing Methods and Secondary Conservative Finite Difference , 2011 .