Phase-change random access memory: A scalable technology

Nonvolatile RAM using resistance contrast in phase-change materials [or phase-change RAM (PCRAM)] is a promising technology for future storage-class memory. However, such a technology can succeed only if it can scale smaller in size, given the increasingly tiny memory cells that are projected for future technology nodes (i.e., generations). We first discuss the critical aspects that may affect the scaling of PCRAM, including materials properties, power consumption during programming and read operations, thermal cross-talk between memory cells, and failure mechanisms. We then discuss experiments that directly address the scaling properties of the phase-change materials themselves, including studies of phase transitions in both nanoparticles and ultrathin films as a function of particle size and film thickness. This work in materials directly motivated the successful creation of a series of prototype PCRAM devices, which have been fabricated and tested at phase-change material cross-sections with extremely small dimensions as low as 3 nm × 20 nm. These device measurements provide a clear demonstration of the excellent scaling potential offered by this technology, and they are also consistent with the scaling behavior predicted by extensive device simulations. Finally, we discuss issues of device integration and cell design, manufacturability, and reliability.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Snezana Lawrence October , 1855, The Hospital.

[3]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[4]  Sir Nevill Mott,et al.  The mechanism of threshold switching in amorphous alloys , 1978 .

[5]  M. Chen,et al.  Compound materials for reversible, phase‐change optical data storage , 1986 .

[6]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[7]  H. Iwasaki,et al.  Completely Erasable Phase Change Optical Disc II: Application of Ag-In-Sb-Te Mixed-Phase System for Rewritable Compact Disc Compatible with CD-Velocity and Double CD-Velocity , 1993 .

[8]  R. T. Phillips,et al.  STRUCTURE OF THE OPTICAL PHASE CHANGE MEMORY ALLOY, AG-V-IN-SB-TE, DETERMINED BY OPTICAL SPECTROSCOPY AND ELECTRON DIFFRACTION , 1997 .

[9]  V. Weidenhof,et al.  Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements , 2000 .

[10]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[11]  S. Hudgens,et al.  Nonvolatile, high density, high performance phase-change memory , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[12]  V. Weidenhof,et al.  Microscopic studies of fast phase transformations in GeSbTe films , 2001 .

[13]  S. Lai,et al.  OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[14]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[15]  M. Wuttig,et al.  Identification of Te alloys with suitable phase change characteristics , 2003 .

[16]  A. Pirovano,et al.  Scaling analysis of phase-change memory technology , 2003, IEEE International Electron Devices Meeting 2003.

[17]  Yi-Chou Chen,et al.  An access-transistor-free (0T/1R) non-volatile resistance random access memory (RRAM) using a novel threshold switching, self-rectifying chalcogenide device , 2003, IEEE International Electron Devices Meeting 2003.

[18]  L. V. Pieterson,et al.  Te-free, Sb-based phase-change materials for high-speed rewritable optical recording , 2003 .

[19]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[20]  D. Ielmini,et al.  Reliability study of phase-change nonvolatile memories , 2004, IEEE Transactions on Device and Materials Reliability.

[21]  A. Pirovano,et al.  Electronic switching effect and phase-change transition in chalcogenide materials , 2004, IEEE Electron Device Letters.

[22]  T. Gotoh,et al.  Minimal Phase-Change Marks Produced in Amorphous Ge2Sb2Te5 Films , 2004 .

[23]  C. Wright,et al.  Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices , 2004 .

[24]  A. Pirovano,et al.  Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials , 2004, IEEE Transactions on Electron Devices.

[25]  F. Pellizzer,et al.  Novel /spl mu/trench phase-change memory cell for embedded and stand-alone non-volatile memory applications , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[26]  B. Johnson,et al.  Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology , 2004 .

[27]  A. Pirovano,et al.  Electronic switching in phase-change memories , 2004, IEEE Transactions on Electron Devices.

[28]  Kinam Kim,et al.  Highly manufacturable high density phase change memory of 64Mb and beyond , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[29]  Y. Khang,et al.  Generation of phase-change Ge–Sb–Te nanoparticles by pulsed laser ablation , 2005 .

[30]  H. Choi,et al.  Synthesis of Size- and Structure-Controlled Ge2Sb2Te5 Nanoparticles , 2005 .

[31]  Kinam Kim,et al.  Programming Characteristics of Phase Change Random Access Memory Using Phase Change Simulations , 2005 .

[32]  L. V. Pieterson,et al.  Phase-change recording materials with a growth-dominated crystallization mechanism: A materials overview , 2005 .

[33]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[34]  Kinam Kim,et al.  Highly reliable 50nm contact cell technology for 256Mb PRAM , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[35]  S.O. Park,et al.  Highly scalable on-axis confined cell structure for high density PRAM beyond 256Mb , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[36]  Bomy Chen,et al.  Characteristics of chalcogenide nonvolatile memory nano-cell-element based on Sb2Te3 material , 2005 .

[37]  M. Wuttig,et al.  Assessment of Se based phase change alloy as a candidate for non-volatile electronic memory applications , 2005 .

[38]  Katsuhisa Tanaka,et al.  Nanoscale phase changes in crystalline Ge2Sb2Te5 films using scanning probe microscopes , 2006 .

[39]  Se-Ho Lee,et al.  Synthesis and characterization of Ge2Sb2Te5 nanowires with memory switching effect. , 2006, Journal of the American Chemical Society.

[40]  L. Goux,et al.  Impact of material crystallization characteristics on the switching behavior of the phase change memory cell , 2006 .

[41]  H. Hamann,et al.  Ultra-high-density phase-change storage and memory , 2006, Nature materials.

[42]  Se-Ho Lee,et al.  Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires , 2006 .

[43]  Yi Cui,et al.  Synthesis and characterization of phase-change nanowires. , 2006, Nano letters.

[44]  M. Breitwisch,et al.  Novel One-Mask Self-Heating Pillar Phase Change Memory , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[45]  R. Zhao,et al.  Investigation on Ultra-high Density and High Speed Non-volatile Phase Change Random Access Memory (PCRAM) by Material Engineering , 2006 .

[46]  M. Wuttig,et al.  Sb-Se-based phase-change memory device with lower power and higher speed operations , 2006, IEEE Electron Device Letters.

[47]  Bin Yu,et al.  III-VI compound semiconductor indium selenide (In2Se3) nanowires : Synthesis and characterization , 2006 .

[48]  J. Kim,et al.  Full Integration of Highly Manufacturable 512Mb PRAM based on 90nm Technology , 2006, 2006 International Electron Devices Meeting.

[49]  You Yin,et al.  Finite Element Analysis of Dependence of Programming Characteristics of Phase-Change Memory on Material Properties of Chalcogenides , 2006 .

[50]  J. Kim,et al.  Highly Reliable 256Mb PRAM with Advanced Ring Contact Technology and Novel Encapsulating Technology , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[51]  M. Breitwisch,et al.  Ultra-Thin Phase-Change Bridge Memory Device Using GeSb , 2006, 2006 International Electron Devices Meeting.

[52]  H. Wong,et al.  Generalized Phase Change Memory Scaling Rule Analysis , 2006, 2006 21st IEEE Non-Volatile Semiconductor Memory Workshop.

[53]  Kinam Kim,et al.  Highly Reliable Ring-Type Contact for High-Density Phase Change Memory , 2006 .

[54]  S. Raoux,et al.  Solution-Based Processing of the Phase-Change Material KSb5S8 , 2006 .

[55]  D. Ielmini,et al.  Physics-based analytical model of chalcogenide-based memories for array simulation , 2006, 2006 International Electron Devices Meeting.

[56]  H. Wong,et al.  Biomimetic Approaches for Fabricating High-Density Nanopatterned Arrays , 2007 .

[57]  C. David Wright,et al.  Master-equation approach to understanding multistate phase-change memories and processors , 2007 .

[58]  R. Shelby,et al.  Solution-phase deposition and nanopatterning of GeSbSe phase-change materials. , 2007, Nature materials.

[59]  M. Breitwisch,et al.  Novel Lithography-Independent Pore Phase Change Memory , 2007, 2007 IEEE Symposium on VLSI Technology.

[60]  D. Suh,et al.  Nonvolatile switching characteristics of laser-ablated Ge2Sb2Te5 nanoparticles for phase-change memory applications , 2007 .

[61]  A. Kellock,et al.  Effect of Al and Cu doping on the crystallization properties of the phase change materials SbTe and GeSb , 2007 .

[62]  H. Wong,et al.  Phase change nanodot arrays fabricated using a self-assembly diblock copolymer approach , 2007 .

[63]  Dae-Hwang Kim,et al.  Three-dimensional simulation model of switching dynamics in phase change random access memory cells , 2007 .

[64]  Hong-Bay Chung,et al.  Phase-change characteristics of chalcogenide Ge1Se1Te2 thin films for use in nonvolatile memories , 2007 .

[65]  D. Ielmini,et al.  Recovery and Drift Dynamics of Resistance and Threshold Voltages in Phase-Change Memories , 2007, IEEE Transactions on Electron Devices.

[66]  Kinam Kim,et al.  Ring contact electrode process for high density phase change random access memory , 2007 .

[67]  Bin Yu,et al.  Synthesis and nanoscale thermal encoding of phase-change nanowires , 2007 .

[68]  N. Zheludev,et al.  All-optical phase-change memory in a single gallium nanoparticle. , 2007, Physical review letters.

[69]  Dolores C. Miller,et al.  Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials , 2007 .

[70]  H. Wong,et al.  An Integrated Phase Change Memory Cell With Ge Nanowire Diode For Cross-Point Memory , 2007, 2007 IEEE Symposium on VLSI Technology.

[71]  S.O. Park,et al.  Highly Scalable Phase Change Memory with CVD GeSbTe for Sub 50nm Generation , 2007, 2007 IEEE Symposium on VLSI Technology.

[72]  Y.C. Chen,et al.  Write Strategies for 2 and 4-bit Multi-Level Phase-Change Memory , 2007, 2007 IEEE International Electron Devices Meeting.