GRADIENT: Grammar-driven genetic programming framework for building multi-component, hierarchical predictive systems

[1]  Athanasios Tsakonas,et al.  Evolving Takagi-Sugeno-Kang Fuzzy Systems using Multi Population Grammar-Guided Genetic Programming , 2016, IJCCI.

[2]  André L. V. Coelho,et al.  Multi-objective design of hierarchical consensus functions for clustering ensembles via genetic programming , 2011, Decis. Support Syst..

[3]  Bogdan Gabrys,et al.  A Generic Multilevel Architecture for Time Series Prediction , 2011, IEEE Transactions on Knowledge and Data Engineering.

[4]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[5]  Bogdan Gabrys,et al.  Meta-learning for time series forecasting and forecast combination , 2010, Neurocomputing.

[6]  B. Gabrys,et al.  Robust predictive modelling of water pollution using biomarker data. , 2010, Water research.

[7]  Bogdan Gabrys,et al.  Ridge regression ensemble for toxicity prediction , 2010, ICCS.

[8]  Bogdan Gabrys,et al.  Pooling for Combination of Multilevel Forecasts , 2009, IEEE Transactions on Knowledge and Data Engineering.

[9]  Bogdan Gabrys,et al.  Architecture for development of adaptive on-line prediction models , 2009, Memetic Comput..

[10]  Tuve Löfström,et al.  Using genetic programming to obtain implicit diversity , 2009, 2009 IEEE Congress on Evolutionary Computation.

[11]  Bogdan Gabrys,et al.  Dynamic combination of forecasts generated by diversification procedures applied to forecasting of airline cancellations , 2009, 2009 IEEE Symposium on Computational Intelligence for Financial Engineering.

[12]  Stephen R. Marsland,et al.  Machine Learning - An Algorithmic Perspective , 2009, Chapman and Hall / CRC machine learning and pattern recognition series.

[13]  I. Yeh Modeling slump of concrete with fly ash and superplasticizer , 2008 .

[14]  Bogdan Gabrys,et al.  Combination of Multi Level Forecasts , 2007, J. VLSI Signal Process..

[15]  Bogdan Gabrys,et al.  The Dynamics of Negative Correlation Learning , 2007, J. VLSI Signal Process..

[16]  Bogdan Gabrys,et al.  Dynamic Pooling for the Combination of Forecasts generated using Multi Level Learning , 2007, 2007 International Joint Conference on Neural Networks.

[17]  Bogdan Gabrys,et al.  Neural Network Ensembles for Time Series Prediction , 2007, 2007 International Joint Conference on Neural Networks.

[18]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[19]  Thorsten Meinl,et al.  KNIME: The Konstanz Information Miner , 2007, GfKl.

[20]  Peter Stone,et al.  Polynomial Regression with Automated Degree: A Function Approximator for Autonomous Agents , 2006, 2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06).

[21]  Bogdan Gabrys,et al.  Genetic algorithms in classifier fusion , 2006, Appl. Soft Comput..

[22]  Xin Yao,et al.  Evolving hybrid ensembles of learning machines for better generalisation , 2006, Neurocomputing.

[23]  Sung-Bae Cho,et al.  The classification of cancer based on DNA microarray data that uses diverse ensemble genetic programming , 2006, Artif. Intell. Medicine.

[24]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[25]  Francesco Gagliardi,et al.  A novel grammar-based genetic programming approach to clustering , 2005, SAC '05.

[26]  Bogdan Gabrys,et al.  Classifier selection for majority voting , 2005, Inf. Fusion.

[27]  Xin Yao,et al.  Diversity creation methods: a survey and categorisation , 2004, Inf. Fusion.

[28]  Giorgio Valentini,et al.  Bias-Variance Analysis of Support Vector Machines for the Development of SVM-Based Ensemble Methods , 2004, J. Mach. Learn. Res..

[29]  Bogdan Gabrys,et al.  Learning hybrid neuro-fuzzy classifier models from data: to combine or not to combine? , 2004, Fuzzy Sets Syst..

[30]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[31]  Siddhartha Bhattacharyya,et al.  Genetic programming in classifying large-scale data: an ensemble method , 2004, Inf. Sci..

[32]  Massimiliano Pontil,et al.  Leave One Out Error, Stability, and Generalization of Voting Combinations of Classifiers , 2004, Machine Learning.

[33]  Leonardo Vanneschi,et al.  Diversity analysis in cellular and multipopulation genetic programming , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[34]  Giandomenico Spezzano,et al.  Ensemble Techniques for Parallel Genetic Programming Based Classifiers , 2003, EuroGP.

[35]  Bogdan Gabrys,et al.  Set Analysis of Coincident Errors and Its Applications for Combining Classifiers , 2003 .

[36]  Bogdan Gabrys,et al.  New Measure of Classifier Dependency in Multiple Classifier Systems , 2002, Multiple Classifier Systems.

[37]  Alberto Suárez,et al.  Backpropagation in Decision Trees for Regression , 2001, ECML.

[38]  Samy Bengio,et al.  SVMTorch: Support Vector Machines for Large-Scale Regression Problems , 2001, J. Mach. Learn. Res..

[39]  Thomas G. Dietterich Ensemble Methods in Machine Learning , 2000, Multiple Classifier Systems.

[40]  D. Ruta,et al.  An Overview of Classifier Fusion Methods , 2000 .

[41]  H. Iba Bagging, Boosting, and bloating in Genetic Programming , 1999 .

[42]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[43]  Wolfgang Banzhaf,et al.  Genetic Programming: An Introduction , 1997 .

[44]  Noel E. Sharkey,et al.  Combining diverse neural nets , 1997, The Knowledge Engineering Review.

[45]  John R. Koza,et al.  Parallel genetic programming: a scalable implementation using the transputer network architecture , 1996 .

[46]  Naonori Ueda,et al.  Generalization error of ensemble estimators , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[47]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[48]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[49]  J. K. Kinnear,et al.  Advances in Genetic Programming , 1994 .

[50]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[51]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.

[52]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[53]  Reiko Tanese,et al.  Distributed Genetic Algorithms , 1989, ICGA.

[54]  Bernard Manderick,et al.  Fine-Grained Parallel Genetic Algorithms , 1989, ICGA.

[55]  R. Clemen Combining forecasts: A review and annotated bibliography , 1989 .

[56]  Phillip Ein-Dor,et al.  Attributes of the performance of central processing units: a relative performance prediction model , 1987, CACM.

[57]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .