MAC-oriented programmable terahertz PHY via graphene-based Yagi-Uda antennas
暂无分享,去创建一个
Eduard Alarcón | Albert Cabellos-Aparicio | Reza Faraji-Dana | Max C. Lemme | Sergi Abadal | Seyed Ehsan Hosseininejad | Mohammad Neshat | Peter Haring Bolívar | Christoph Suessmeier | S. Abadal | A. Cabellos-Aparicio | M. Neshat | M. Lemme | E. Alarcón | S. Hosseininejad | P. Bolívar | C. Suessmeier | R. Faraji-Dana
[1] Nader Komjani,et al. Comparative analysis of graphene-integrated slab waveguides for terahertz plasmonics , 2016 .
[2] J. S. Gomez-Diaz,et al. Self-biased reconfigurable graphene stacks for terahertz plasmonics , 2014, Nature Communications.
[3] Kwang S. Kim,et al. Tuning the graphene work function by electric field effect. , 2009, Nano letters.
[4] Norman P. Jouppi,et al. CACTI 6.0: A Tool to Model Large Caches , 2009 .
[5] Linsheng Wu,et al. Design of a Beam Reconfigurable THz Antenna With Graphene-Based Switchable High-Impedance Surface , 2012, IEEE Transactions on Nanotechnology.
[6] Zabih Ghassemlooy,et al. Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns , 2016 .
[7] Mee-Ran Kim,et al. A SUC-Based Full-Binary 6-bit 3.1-GS/s 17.7-mW Current-Steering DAC in 0.038 mm $^{2}$ , 2016, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.
[8] Josep Torrellas,et al. OrthoNoC: A Broadcast-Oriented Dual-Plane Wireless Network-on-Chip Architecture , 2018, IEEE Transactions on Parallel and Distributed Systems.
[9] J. S. Gomez-Diaz,et al. Graphene-based Antennas for Terahertz Systems: A Review , 2017, 1704.00371.
[10] J. Robertson. High dielectric constant oxides , 2004 .
[11] Xin-Wei Yao,et al. TAB-MAC: Assisted beamforming MAC protocol for Terahertz communication networks , 2016, Nano Commun. Networks.
[12] J. S. Gomez-Diaz,et al. Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets , 2012 .
[13] Lluis Jofre,et al. Pixel reconfigurable antennas: Towards low-complexity full reconfiguration , 2016, 2016 10th European Conference on Antennas and Propagation (EuCAP).
[14] Ian F. Akyildiz,et al. Graphene-based plasmonic nano-transceiver for terahertz band communication , 2014, The 8th European Conference on Antennas and Propagation (EuCAP 2014).
[15] Chong Han,et al. MA-ADM: A memory-assisted angular-division-multiplexing MAC protocol in Terahertz communication networks , 2017, Nano Commun. Networks.
[16] Xiaodai Dong,et al. Design of a Reconfigurable MIMO System for THz Communications Based on Graphene Antennas , 2014, IEEE Transactions on Terahertz Science and Technology.
[17] Giuseppe Piro,et al. Initial MAC Exploration for Graphene-enabled Wireless Networks-on-Chip , 2014, NANOCOM' 14.
[18] Ian F. Akyildiz,et al. Terahertz band: Next frontier for wireless communications , 2014, Phys. Commun..
[19] Ian F. Akyildiz,et al. Distance-aware multi-carrier (DAMC) modulation in Terahertz Band communication , 2014, 2014 IEEE International Conference on Communications (ICC).
[20] S. Xiao,et al. Graphene-plasmon polaritons: From fundamental properties to potential applications , 2016, 1606.00471.
[21] А. П. Горбач,et al. МОДЕЛИРОВАНИЕ СВОЙСТВ ДВОЙНОГО ВОЛНОВОДНОГО ТРОЙНИКА В CST MICROWAVE STUDIO , 2018 .
[22] Mary Ann Weitnauer,et al. Pulse-level beam-switching MAC with energy control in picocell Terahertz networks , 2014, 2014 IEEE Global Communications Conference.
[23] Eduard Alarcón,et al. Study of hybrid and pure plasmonic terahertz antennas based on graphene guided-wave structures , 2017, Nano Commun. Networks.
[24] Michael J. Medley,et al. A Link-Layer Synchronization and Medium Access Control Protocol for Terahertz-Band Communication Networks , 2014, 2015 IEEE Global Communications Conference (GLOBECOM).
[25] Eduard Alarcón,et al. Computing and Communications for the Software-Defined Metamaterial Paradigm: A Context Analysis , 2018, IEEE Access.
[26] K. Novoselov,et al. Rayleigh imaging of graphene and graphene layers. , 2007, Nano letters.
[27] Ikmo Park,et al. Terahertz Yagi-Uda Antenna for High Input Resistance , 2009 .