Exact linear modeling with polynomial coefficients

Given a finite set of polynomial, multivariate, and vector-valued functions, we show that their span can be written as the solution set of a linear system of partial differential equations (PDE) with polynomial coefficients. We present two different but equivalent ways to construct a PDE system whose solution set is precisely the span of the given trajectories. One is based on commutative algebra and the other one works directly in the Weyl algebra, thus requiring the use of tools from non-commutative computer algebra. In behavioral systems theory, the resulting model for the data is known as the most powerful unfalsified model (MPUM) within the class of linear systems with kernel representations over the Weyl algebra, i.e., the ring of differential operators with polynomial coefficients.

[1]  Viktor Levandovskyy,et al.  Exact linear modeling using Ore algebras , 2010, J. Symb. Comput..

[2]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[3]  Jan C. Willems,et al.  From time series to linear system - Part II. Exact modelling , 1986, Autom..

[4]  Nirmal K. Bose,et al.  Gröbner Bases for Problem Solving in Multidimensional Systems , 2001, Multidimens. Syst. Signal Process..

[5]  Viktor Levandovskyy,et al.  Plural, a Non-commutative Extension of Singular: Past, Present and Future , 2006, ICMS.

[6]  Eva Zerz,et al.  Characteristic Frequencies, Polynomial-Exponential Trajectories, and Linear Exact Modeling with Multidimensional Behaviors , 2005, SIAM J. Control. Optim..

[7]  N. Bose Applied multidimensional systems theory , 1982 .

[8]  Andrés Iglesias,et al.  Mathematical Software - ICMS 2006, Second International Congress on Mathematical Software, Castro Urdiales, Spain, September 1-3, 2006, Proceedings , 2006, ICMS.

[9]  C. R. Hajarnavis AN INTRODUCTION TO NONCOMMUTATIVE NOETHERIAN RINGS , 1991 .

[10]  N. K. Bose,et al.  Multidimensional FIR filter bank design using Grobner bases , 1999 .

[11]  E. Zerz,et al.  Algorithmic aspects of algebraic system theory , 2010 .

[12]  J. Willems,et al.  A behavioral approach to linear exact modeling , 1993, IEEE Trans. Autom. Control..

[13]  N. Bose Multidimensional Systems Theory , 1985 .

[14]  Zhiping Lin,et al.  A Tutorial on GrÖbner Bases With Applications in Signals and Systems , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  E. Zerz Topics in Multidimensional Linear Systems Theory , 2000 .

[16]  Zhiping Lin,et al.  Applications of Gröbner bases to signal and image processing: a survey , 2004 .

[17]  Paul E. Schupp,et al.  Multidimensional Systems Theory and Applications , 1977 .

[18]  Jan C. Willems,et al.  From time series to linear system - Part III: Approximate modelling , 1987, Autom..

[19]  Eva Zerz The discrete multidimensional MPUM , 2008, Multidimens. Syst. Signal Process..

[20]  Margreta Kuijper,et al.  Reed-Solomon list decoding from a system-theoretic perspective , 2004, IEEE Transactions on Information Theory.