Gold/monolayer graphitic carbon nitride plasmonic photocatalyst for ultrafast electron transfer in solar-to-hydrogen energy conversion

[1]  W. Ho,et al.  Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets , 2018 .

[2]  Cody W. Schlenker,et al.  Ultrafast Spectroscopy Reveals Electron-Transfer Cascade That Improves Hydrogen Evolution with Carbon Nitride Photocatalysts. , 2017, Journal of the American Chemical Society.

[3]  Tsai-Te Wang,et al.  Synergistic Effect of Hydrogenation and Thiocyanate Treatments on Ag-Loaded TiO2 Nanoparticles for Solar-to-Hydrogen Conversion , 2017 .

[4]  H. Petek,et al.  Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions. , 2017, Journal of the American Chemical Society.

[5]  W. Ho,et al.  Hybridization of rutile TiO₂ (rTiO₂) with g-C₃N₄ quantum dots (CN QDs): An efficient visible-light-driven z-scheme hybridized photocatalyst , 2017 .

[6]  Huogen Yu,et al.  Facile synthesis and enhanced photocatalytic H2-evolution performance of NiS2-modified g-C3N4 photocatalysts , 2017 .

[7]  W. Ho,et al.  Enhanced visible-light photo-oxidation of nitric oxide using bismuth-coupled graphitic carbon nitride composite heterostructures , 2017 .

[8]  Song Ma,et al.  利用Ni(OH) x 助催化剂修饰提高g-C 3 N 4 纳米片/WO 3 纳米棒Z型纳米体系的可见光产氢活性的研究 , 2017 .

[9]  J. Vela,et al.  Using ATTO Dyes To Probe the Photocatalytic Activity of Au–CdS Nanoparticles , 2017 .

[10]  M. Kraft,et al.  Unique PCoN Surface Bonding States Constructed on g‐C3N4 Nanosheets for Drastically Enhanced Photocatalytic Activity of H2 Evolution , 2017 .

[11]  A. Mishra,et al.  Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation , 2016 .

[12]  Su‐Un Lee,et al.  Metal-Semiconductor Heteronanocrystals with Desired Configurations for Plasmonic Photocatalysis. , 2016, Journal of the American Chemical Society.

[13]  Jinhua Ye,et al.  In Situ Bond Modulation of Graphitic Carbon Nitride to Construct p–n Homojunctions for Enhanced Photocatalytic Hydrogen Production , 2016 .

[14]  P. Ajayan,et al.  Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency , 2016 .

[15]  L. Qu,et al.  Graphitic Carbon Nitride/Nitrogen-Rich Carbon Nanofibers: Highly Efficient Photocatalytic Hydrogen Evolution without Cocatalysts. , 2016, Angewandte Chemie.

[16]  Jinhua Ye,et al.  Nanometals for Solar‐to‐Chemical Energy Conversion: From Semiconductor‐Based Photocatalysis to Plasmon‐Mediated Photocatalysis and Photo‐Thermocatalysis , 2016, Advanced materials.

[17]  Siang-Piao Chai,et al.  Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? , 2016, Chemical reviews.

[18]  S. Meng,et al.  Quantum Mode Selectivity of Plasmon-Induced Water Splitting on Gold Nanoparticles. , 2016, ACS nano.

[19]  L. Razzari,et al.  Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting. , 2016, ACS nano.

[20]  Santosh Kumar,et al.  Surface plasmon resonance-induced photocatalysis by Au nanoparticles decorated mesoporous g-C3N4 nanosheets under direct sunlight irradiation , 2016 .

[21]  L. Qu,et al.  Atomically Thin Mesoporous Nanomesh of Graphitic C₃N₄ for High-Efficiency Photocatalytic Hydrogen Evolution. , 2016, ACS nano.

[22]  Kazuhiko Maeda,et al.  Development of Novel Photocatalyst and Cocatalyst Materials for Water Splitting under Visible Light , 2016 .

[23]  Jinhua Ye,et al.  Nature-Inspired Environmental "Phosphorylation" Boosts Photocatalytic H2 Production over Carbon Nitride Nanosheets under Visible-Light Irradiation. , 2015, Angewandte Chemie.

[24]  Jun Jiang,et al.  Toward Enhanced Photocatalytic Oxygen Evolution: Synergetic Utilization of Plasmonic Effect and Schottky Junction via Interfacing Facet Selection , 2015, Advanced materials.

[25]  Mietek Jaroniec,et al.  Polymeric Photocatalysts Based on Graphitic Carbon Nitride , 2015, Advanced materials.

[26]  D. Du,et al.  Controllable synthesis of CeO2/g-C3N4 composites and their applications in the environment. , 2015, Dalton transactions.

[27]  S. Kamarudin,et al.  Hydrogen from photo-catalytic water splitting process: A review , 2015 .

[28]  Anran Liu,et al.  Dissolution and liquid crystals phase of 2D polymeric carbon nitride. , 2015, Journal of the American Chemical Society.

[29]  Yanfang Liu,et al.  Enhancement of visible photocatalytic activity via Ag@C3N4 core–shell plasmonic composite , 2014 .

[30]  H. Wan,et al.  Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity , 2013 .