Equilibrium fluid-solid coexistence of hard spheres.

We present a tethered Monte Carlo simulation of the crystallization of hard spheres. Our method boosts the traditional umbrella sampling to the point of making practical the study of constrained Gibbs' free energies depending on several crystalline order parameters. We obtain high-accuracy estimates of the fluid-crystal coexistence pressure for up to 2916 particles (enough to accommodate fluid-solid interfaces). We are able to extrapolate to infinite volume the coexistence pressure [p(co)=11.5727(10)k(B)T/σ(3)] and the interfacial free energy [γ({100})=0.636(11)k(B)T/σ(2)].