A Bellman function proof of the L2 bump conjecture

[1]  A. Lerner On an estimate of Calderón-Zygmund operators by dyadic positive operators , 2012, 1202.1860.

[2]  D. Cruz-Uribe,et al.  Sharp weighted estimates for classical operators , 2010, 1001.4254.

[3]  S. Treil,et al.  A SOLUTION OF THE BUMP CONJECTURE FOR ALL CALDERÓN – ZYGMUND OPERATORS : THE BELLMAN FUNCTION APPROACH , 2012 .

[4]  D. Cruz-Uribe,et al.  Logarithmic bump conditions and the two weight boundedness of Calder\'on-Zygmund operators , 2011, 1112.0676.

[5]  A. Volberg,et al.  The proof of $A_2$ conjecture in a geometrically doubling metric space , 2011, 1106.1342.

[6]  S. Treil Sharp $A_2$ estimates of Haar shifts via Bellman function , 2011, 1105.2252.

[7]  D. Cruz-Uribe,et al.  Weights, Extrapolation and the Theory of Rubio de Francia , 2011 .

[8]  S. Treil,et al.  Regularizations of general singular integral operators. , 2010, 1010.6184.

[9]  S. Treil,et al.  Sharp weighted estimates of the dyadic shifts and $A_2$ conjecture , 2010, 1010.0755.

[10]  A. Lerner A pointwise estimate for the local sharp maximal function with applications to singular integrals , 2010 .

[11]  Tuomas P. Hytonen,et al.  The sharp weighted bound for general Calderon-Zygmund operators , 2010, 1007.4330.

[12]  D. Cruz-Uribe,et al.  Sharp two-weight inequalities for singular integrals, with applications to the Hilbert transform and the Sarason conjecture , 2007 .

[13]  J. M. Martell,et al.  SHARP TWO-WEIGHT INEQUALITIES FOR SINGULAR INTEGRALS , 2007 .

[14]  D. Cruz-Uribe,et al.  On the two-weight problem for singular integral operators , 2002 .

[15]  R. Wheeden,et al.  Uncertainty Principle Estimates for Vector Fields , 2001 .

[16]  D. Cruz-Uribe Two-weight, weak-type norm inequalities for fractional integrals, Calderon-Zygmund operators and commutators , 2000 .

[17]  D. Cruz-Uribe,et al.  Sharp Two-weight, weak-type norm inequalities for singular integral operators , 1999 .

[18]  S. Treil,et al.  The Bellman functions and two-weight inequalities for Haar multipliers , 1997, math/9711209.

[19]  C. Pérez On Sufficient Conditions for the Boundedness of the Hardy–Littlewood Maximal Operator between Weighted Lp‐Spaces with Different Weights , 1995 .

[20]  C. Pérez Weighted Norm Inequalities for Singular Integral Operators , 1994 .

[21]  C. Neugebauer Inserting A p -Weights , 1983 .

[22]  J. R. D. Francia Boundedness of maximal functions and singular integrals in weighted ^{} spaces , 1981 .

[23]  W. L. Cowley The Uncertainty Principle , 1949, Nature.