A Bellman function proof of the L2 bump conjecture
暂无分享,去创建一个
[1] A. Lerner. On an estimate of Calderón-Zygmund operators by dyadic positive operators , 2012, 1202.1860.
[2] D. Cruz-Uribe,et al. Sharp weighted estimates for classical operators , 2010, 1001.4254.
[3] S. Treil,et al. A SOLUTION OF THE BUMP CONJECTURE FOR ALL CALDERÓN – ZYGMUND OPERATORS : THE BELLMAN FUNCTION APPROACH , 2012 .
[4] D. Cruz-Uribe,et al. Logarithmic bump conditions and the two weight boundedness of Calder\'on-Zygmund operators , 2011, 1112.0676.
[5] A. Volberg,et al. The proof of $A_2$ conjecture in a geometrically doubling metric space , 2011, 1106.1342.
[6] S. Treil. Sharp $A_2$ estimates of Haar shifts via Bellman function , 2011, 1105.2252.
[7] D. Cruz-Uribe,et al. Weights, Extrapolation and the Theory of Rubio de Francia , 2011 .
[8] S. Treil,et al. Regularizations of general singular integral operators. , 2010, 1010.6184.
[9] S. Treil,et al. Sharp weighted estimates of the dyadic shifts and $A_2$ conjecture , 2010, 1010.0755.
[10] A. Lerner. A pointwise estimate for the local sharp maximal function with applications to singular integrals , 2010 .
[11] Tuomas P. Hytonen,et al. The sharp weighted bound for general Calderon-Zygmund operators , 2010, 1007.4330.
[12] D. Cruz-Uribe,et al. Sharp two-weight inequalities for singular integrals, with applications to the Hilbert transform and the Sarason conjecture , 2007 .
[13] J. M. Martell,et al. SHARP TWO-WEIGHT INEQUALITIES FOR SINGULAR INTEGRALS , 2007 .
[14] D. Cruz-Uribe,et al. On the two-weight problem for singular integral operators , 2002 .
[15] R. Wheeden,et al. Uncertainty Principle Estimates for Vector Fields , 2001 .
[16] D. Cruz-Uribe. Two-weight, weak-type norm inequalities for fractional integrals, Calderon-Zygmund operators and commutators , 2000 .
[17] D. Cruz-Uribe,et al. Sharp Two-weight, weak-type norm inequalities for singular integral operators , 1999 .
[18] S. Treil,et al. The Bellman functions and two-weight inequalities for Haar multipliers , 1997, math/9711209.
[19] C. Pérez. On Sufficient Conditions for the Boundedness of the Hardy–Littlewood Maximal Operator between Weighted Lp‐Spaces with Different Weights , 1995 .
[20] C. Pérez. Weighted Norm Inequalities for Singular Integral Operators , 1994 .
[21] C. Neugebauer. Inserting A p -Weights , 1983 .
[22] J. R. D. Francia. Boundedness of maximal functions and singular integrals in weighted ^{} spaces , 1981 .
[23] W. L. Cowley. The Uncertainty Principle , 1949, Nature.