Stock price prediction usingk-medoids clustering with indexing dynamic time warping
暂无分享,去创建一个
Mitsuyoshi Imamura | Kenichi Yoshida | Kei Nakagawa | Kei Nakagawa | Mitsuyoshi Imamura | K. Yoshida
[1] James D. Hamilton. Time Series Analysis , 1994 .
[2] Eamonn J. Keogh,et al. Scaling up dynamic time warping for datamining applications , 2000, KDD '00.
[3] Ben Jacobsen,et al. The Halloween Indicator, 'Sell in May and Go Away': Another Puzzle , 2001 .
[4] Satoru Takahashi,et al. Learning Value-Added Information of Asset Management from Analyst Reports Through Text Mining , 2005, KES.
[5] Mitsuyoshi Imamura,et al. Stock Price Prediction with Fluctuation Patterns Using Indexing Dynamic Time Warping and k^* -Nearest Neighbors , 2017, JSAI-isAI Workshops.
[6] E. Fama,et al. The Cross‐Section of Expected Stock Returns , 1992 .
[7] Clifford S. Asness,et al. Value and Momentum Everywhere: Value and Momentum Everywhere , 2013 .
[8] Campbell R. Harvey,et al. Editor's Choice … and the Cross-Section of Expected Returns , 2016 .
[9] F. Itakura,et al. Minimum prediction residual principle applied to speech recognition , 1975 .
[10] Vit Niennattrakul,et al. On Clustering Multimedia Time Series Data Using K-Means and Dynamic Time Warping , 2007, 2007 International Conference on Multimedia and Ubiquitous Engineering (MUE'07).