Mathematical modeling of tuberculosis data of China.

This paper concentrates on the tuberculosis data of China from January 2005 to December 2012. We set up a mathematical model to fit those data with the goodness of fit and obtain the optimal parameter values of the model. By the Chi-square test of the statistical inference, the optimal parameter values of the model are reasonable. We get the effective reproductive number of the disease for each year, and also investigate the preventive measures to control the tuberculosis.

[1]  R. May,et al.  Infectious Diseases of Humans: Dynamics and Control , 1991, Annals of Internal Medicine.

[2]  C. Connell McCluskey,et al.  Global Analysis of Two Tuberculosis Models , 2004 .

[3]  S. M. Raimundo,et al.  Transmission of Tuberculosis with Exogenous Re-infection and Endogenous Reactivation , 2006 .

[4]  C. Castillo-Chavez,et al.  To treat or not to treat: the case of tuberculosis , 1997, Journal of mathematical biology.

[5]  Jianquan Li,et al.  Global stability of two tuberculosis models with treatment and self-cure , 2012 .

[6]  Z. Feng,et al.  A Two-Strain Tuberculosis Model with Age of Infection , 2002, SIAM J. Appl. Math..

[7]  Tailei Zhang,et al.  Global stability for a tuberculosis model , 2011, Math. Comput. Model..

[8]  Carlos Castillo-Chavez,et al.  A Model for Tuberculosis w Exogenous Reinfection , 2000 .

[9]  Xiao-Qiang Zhao,et al.  A Tuberculosis Model with Seasonality , 2010, Bulletin of mathematical biology.

[10]  G. W. Snedecor Statistical Methods , 1964 .

[11]  N. Ferguson,et al.  Planning for smallpox outbreaks , 2003, Nature.

[12]  J. Dushoff,et al.  Evolution and persistence of influenza A and other diseases. , 2004, Mathematical biosciences.

[13]  Daniela Fernandes Ramos,et al.  New anti-tuberculosis drugs: strategies, sources and new molecules. , 2009, Current medicinal chemistry.

[14]  Sc Gupta,et al.  Noncompliance to DOTS: How it can be Decreased , 2011, Indian journal of community medicine : official publication of Indian Association of Preventive & Social Medicine.

[15]  C. Castillo-Chavez,et al.  An Overview of Dynamical Models of Tuberculosis , 2002 .

[16]  Zhien Ma,et al.  Global stability of two models with incomplete treatment for tuberculosis , 2010 .

[17]  S. Blower,et al.  Control Strategies for Tuberculosis Epidemics: New Models for Old Problems , 1996, Science.

[18]  C. Murray,et al.  Modeling the impact of global tuberculosis control strategies. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Jonathan Dushoff,et al.  Ecology and evolution of the flu , 2002 .

[20]  Carlos Castillo-Chavez,et al.  Dynamical models of tuberculosis and their applications. , 2004, Mathematical biosciences and engineering : MBE.

[21]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[22]  J. Ryff To treat or not to treat?: The judicious use of interferon-α-2a for the treatment of chronic hepatitis B , 1993 .