C(sp3)–H Oxidative Addition at Tantalocene Hydrides

[1]  Sharon R. Neufeldt,et al.  Experimental and Computational Evaluation of Tantalocene Hydrides for C–H Activation of Arenes , 2021, Organometallics.

[2]  Guilian Luchini,et al.  GoodVibes: automated thermochemistry for heterogeneous computational chemistry data , 2020, F1000Research.

[3]  Ian A. Tonks,et al.  Modern applications of low-valent early transition metals in synthesis and catalysis , 2018, Nature Reviews Chemistry.

[4]  M. Baik,et al.  A new and selective cycle for dehydrogenation of linear and cyclic alkanes under mild conditions using a base metal. , 2017, Nature chemistry.

[5]  R. Periana,et al.  Homogeneous Functionalization of Methane. , 2017, Chemical reviews.

[6]  K. P. Kepp A Quantitative Scale of Oxophilicity and Thiophilicity. , 2016, Inorganic chemistry.

[7]  J. Hartwig Evolution of C-H Bond Functionalization from Methane to Methodology. , 2016, Journal of the American Chemical Society.

[8]  E. Abou‐hamad,et al.  Alkane metathesis with the tantalum methylidene [(≡SiO)Ta(═CH2)Me2]/[(≡SiO)2Ta(═CH2)Me] generated from well-defined surface organometallic complex [(≡SiO)Ta(V)Me4]. , 2015, Journal of the American Chemical Society.

[9]  R. Bergman,et al.  Generation of low-valent tantalum species by reversible C-H activation in a cyclometallated tantalum hydride complex. , 2014, Dalton transactions.

[10]  L. Cavallo,et al.  Mechanism of n-Butane Hydrogenolysis Promoted by Ta-Hydrides Supported on Silica , 2014 .

[11]  R. Waterman σ-Bond Metathesis: A 30-Year Retrospective , 2013 .

[12]  I. Erden,et al.  An efficient catalytic method for fulvene synthesis. , 2011, Tetrahedron.

[13]  M. V. Shree,et al.  Intermolecular C–H Activations of Hydrocarbons Initiated by Cp*M(NO)(CH2CMe3)(η3-CH2CHCHPh) Complexes (M = Mo, W) , 2011 .

[14]  M. Baik,et al.  Methane activation and exchange by titanium-carbon multiple bonds , 2011 .

[15]  G. Nikonov,et al.  Phosphido-bridged Ta/Rh bimetallic complex: synthesis, structure, and catalytic hydrosilylation of acetophenone. , 2010, Dalton transactions.

[16]  C. Cummins,et al.  Carbon dioxide reduction by terminal tantalum hydrides: formation and isolation of bridging methylene diolate complexes. , 2010, Journal of the American Chemical Society.

[17]  G. Parkin Temperature-dependent transitions between normal and inverse isotope effects pertaining to the interaction of H-H and C-H bonds with transition metal centers. , 2009, Accounts of chemical research.

[18]  S. Norsic,et al.  Non-oxidative coupling reaction of methane to ethane and hydrogen catalyzed by the silica-supported tantalum hydride: ([triple bond]SiO)2Ta-H. , 2008, Journal of the American Chemical Society.

[19]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[20]  P. Legzdins,et al.  Selective activation and functionalization of linear alkanes initiated under ambient conditions by a tungsten allyl nitrosyl complex. , 2007, Journal of the American Chemical Society.

[21]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[22]  Glenn J. Sunley,et al.  Development of tungsten-based heterogeneous alkane metathesis catalysts through a structure-activity relationship. , 2005, Angewandte Chemie.

[23]  Glenn J. Sunley,et al.  Primary products and mechanistic considerations in alkane metathesis. , 2005, Journal of the American Chemical Society.

[24]  Mats Tilset,et al.  Mechanistic aspects of C-H activation by Pt complexes. , 2005, Chemical reviews.

[25]  Jean-Marie Basset,et al.  Heterogeneous well-defined catalysts for metathesis of inert and not so inert bonds , 2004 .

[26]  R. Schurko,et al.  A solid-state NMR and ab initio study of sodium metallocenes , 2003 .

[27]  Giovanni Scalmani,et al.  Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model , 2003, J. Comput. Chem..

[28]  D. Churchill,et al.  Normal and inverse primary kinetic deuterium isotope effects for C-H bond reductive elimination and oxidative addition reactions of molybdenocene and tungstenocene complexes: evidence for benzene sigma-complex intermediates. , 2003, Journal of the American Chemical Society.

[29]  J. Bercaw,et al.  Understanding and exploiting C–H bond activation , 2002, Nature.

[30]  Jennifer C. Green,et al.  Bent metallocenes revisited , 1998 .

[31]  Darryl S. Williams,et al.  A General Route to Labile Niobium and Tantalum d0 Monoimides. Discussion of Metal−Nitrogen Vibrational Modes , 1997 .

[32]  J. Basset,et al.  Metathesis of Alkanes Catalyzed by Silica-Supported Transition Metal Hydrides , 1997, Science.

[33]  P. Fanwick,et al.  Intramolecular Dehydrogenation of Alkyl Groups at Niobium Aryloxide Centers: Bonding and Reactivity of the Ensuing Niobacyclopropane Ring , 1996 .

[34]  H. Brunner,et al.  Preparation and Reactivity of Peralkylated Tantalocene Sulfur Complexes Having a Fulvenoid Substructure , 1996 .

[35]  D. M. Heinekey Exchange coupling in metallocene trihydride complexes , 1991 .

[36]  P. Fanwick,et al.  Intramolecular alkane dehydrogenation and functionalization at niobium metal centers , 1990 .

[37]  H. Bernhard Schlegel,et al.  Reaction Path Following in Mass-Weighted Internal Coordinates , 1990 .

[38]  R. Chesnut,et al.  Intramolecular activation of aliphatic and aromatic carbon-hydrogen bonds by tantalum(III) metal centers: synthesis and structure of the bis-metalated compounds Ta(OC6H3ButCMe2Ch2)2Cl and Ta(OC6H3PhC6H4)2(OAr-2,6-PH2) (OAr-2,6-Ph2 = 2,6-diphenylphenoxide) , 1989 .

[39]  H. Bernhard Schlegel,et al.  An improved algorithm for reaction path following , 1989 .

[40]  P. T. Wolczanski,et al.  Carbon monoxide cleavage by (silox)3Ta (silox = tert-Bu3SiO-) , 1986 .

[41]  I. P. Rothwell,et al.  Photochemical .alpha.-hydride abstraction , 1984 .

[42]  P. L. Watson Methane exchange reactions of lanthanide and early-transition-metal methyl complexes , 1983 .

[43]  I. P. Rothwell,et al.  The chemistry of sterically crowded aryl-oxide ligands. Part 2. Cyclotantalation of 2,6-di-tert-butylphenoxide , 1982 .

[44]  J. Atwood,et al.  Photoinduced reactions of (.eta.5-C5H5)2MH3 and (.eta.5-C5H5)2M(CO)H (M = Nb, Ta) and the molecular structure of (.eta.5-C5H5)2Ta(CO)H , 1982 .

[45]  K. Fukui The path of chemical reactions - the IRC approach , 1981 .

[46]  M. Bradley,et al.  Photochemistry of transition metal hydride complexes. 3. Photoinduced elimination of molecular hydrogen from bis(.eta.5-cyclopentadienyl)dihydromolybdenum , 1978 .

[47]  R. Hoffmann,et al.  Structure and chemistry of bis(cyclopentadienyl)-MLn complexes , 1976 .

[48]  G. W. Parshall Homogeneous catalytic activation of carbon-hydrogen bonds , 1975 .

[49]  J. Bercaw,et al.  Titanocene as an intermediate in reactions involving molecular hydrogen and nitrogen , 1972 .

[50]  G. W. Parshall Intramolecular aromatic substitution in transition metal complexes , 1970 .

[51]  R. Crabtree Alkane C–H activation and functionalization with homogeneous transition metal catalysts: a century of progress—a new millennium in prospect , 2001 .

[52]  R. Sanner,et al.  A double intramolecular ring metalation: formation, spectroscopic characterization, and molecular structure of (C5Me3(CH2)2)Ta(H)2(PMe3)2 , 1989 .

[53]  W. A. Nugent,et al.  Catalytic C-H activation in early transition-metal dialkylamides and alkoxides , 1983 .

[54]  G. W. Parshall,et al.  ACTIVATION OF AROMATIC CARBON--HYDROGEN BONDS BY TRANSITION METAL COMPLEXES. II. SUBSTITUTED BENZENES. , 1972 .

[55]  G. W. Parshall,et al.  Hydride derivatives of niobocene and tantalocene , 1971 .

[56]  G. W. Parshall,et al.  Catalysis of aromatic hydrogen-deuterium exchange by metal hydrides , 1970 .