Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia

[1]  F. Bäckhed,et al.  Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits , 2014, Cell.

[2]  S. Ikeda,et al.  β-Hydroxybutyrate Modulates N-Type Calcium Channels in Rat Sympathetic Neurons by Acting as an Agonist for the G-Protein-Coupled Receptor FFA3 , 2013, The Journal of Neuroscience.

[3]  T. Schwartz,et al.  GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. , 2013, Endocrinology.

[4]  L. Edvinsson,et al.  VIP/PACAP receptors in cerebral arteries of rat: Characterization, localization and relation to intracellular calcium , 2013, Neuropeptides.

[5]  Takafumi Hara,et al.  Short‐chain fatty acid receptor GPR41‐mediated activation of sympathetic neurons involves synapsin 2b phosphorylation , 2012, FEBS letters.

[6]  A. M. Habib,et al.  Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein–Coupled Receptor FFAR2 , 2012, Diabetes.

[7]  Takafumi Hara,et al.  Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41) , 2011, Proceedings of the National Academy of Sciences.

[8]  J. Hurley,et al.  TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation , 2011, PAIN®.

[9]  M. Cawthorne,et al.  Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids , 2010, FEBS letters.

[10]  S. Tunaru,et al.  An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. , 2010, Cell metabolism.

[11]  I. Kato,et al.  Expression of short-chain fatty acid receptor GPR41 in the human colon. , 2009, Biomedical research.

[12]  Masashi Yanagisawa,et al.  Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41 , 2008, Proceedings of the National Academy of Sciences.

[13]  M. Tschöp,et al.  Central Nervous System Regulation of Energy Metabolism , 2008, Annals of the New York Academy of Sciences.

[14]  B. White,et al.  Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis , 2008, Nature Reviews Microbiology.

[15]  M. W. Schwartz,et al.  Central nervous system control of food intake and body weight , 2006, Nature.

[16]  P. Pfluger,et al.  Ghrelin action in the brain controls adipocyte metabolism. , 2006, The Journal of clinical investigation.

[17]  L. Landsberg Feast or Famine: The Sympathetic Nervous System Response to Nutrient Intake , 2006, Cellular and Molecular Neurobiology.

[18]  Ki-Choon Choi,et al.  Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. , 2005, Endocrinology.

[19]  M. Møller,et al.  Demonstration of PACAP‐immunoreactive intrapineal nerve fibers in the golden hamster (Mesocricetus auratus) originating from the trigeminal ganglion , 2005, Journal of pineal research.

[20]  M. Møller,et al.  Origin of PACAP-immunoreactive Nerve Fibers Innervating the Subarachnoidal Blood Vessels of the Rat Brain , 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[21]  R. Kedzierski,et al.  Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  M. Parmentier,et al.  Functional Characterization of Human Receptors for Short Chain Fatty Acids and Their Role in Polymorphonuclear Cell Activation* , 2003, Journal of Biological Chemistry.

[23]  S. Dowell,et al.  The Orphan G Protein-coupled Receptors GPR41 and GPR43 Are Activated by Propionate and Other Short Chain Carboxylic Acids* , 2003, The Journal of Biological Chemistry.

[24]  B. Lowell,et al.  βAR Signaling Required for Diet-Induced Thermogenesis and Obesity Resistance , 2002, Science.

[25]  M. Møller,et al.  The anatomy and innervation of the mammalian pineal gland , 2002, Cell and Tissue Research.

[26]  N. Dascal Ion-channel regulation by G proteins , 2001, Trends in Endocrinology & Metabolism.

[27]  P. Clifton,et al.  Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. , 2001, Physiological reviews.

[28]  S. Woods,et al.  Central nervous system control of food intake , 2000, Nature.

[29]  A. Stewart,et al.  Rapid modification of bacterial artificial chromosomes by ET-recombination. , 1999, Nucleic acids research.

[30]  L. Landsberg,et al.  Suppression of sympathetic nervous system during fasting. , 1997, Obesity research.

[31]  L. F. Kolakowski,et al.  A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1. , 1997, Biochemical and biophysical research communications.

[32]  N. Dun,et al.  Pituitary adenylate cyclase activating polypeptide immunoreactivity in the rat spinal cord and medulla: Implication of sensory and autonomic functions , 1996, Neuroscience.

[33]  D. Clapham,et al.  Ion channel regulation by G proteins. , 1995, Physiological reviews.

[34]  G. Macfarlane,et al.  Short chain fatty acids in human large intestine, portal, hepatic and venous blood. , 1987, Gut.

[35]  D. McDonald,et al.  The innervation of glomus cells, ganglion cells and blood vessels in the rat carotid body: A quantitative ultrastructural analysis , 1975 .

[36]  J. Elmquist,et al.  Printed in U.S.A. Copyright © 2003 by The Endocrine Society doi: 10.1210/en.2003-0241 Minireview: From Anorexia to Obesity—The Yin and Yang of Body Weight Control , 2022 .