A Class of New Preconditioners for Linear Solvers Used in Power System Time-Domain Simulation

In this paper, a new class of preconditioners for iterative methods is proposed for the solution of linear equations that arise in the time-domain simulation of the power system. The system of linear equations results from an attempt to solve the differential algebraic equations (DAE) encountered in the power system dynamic simulation. The preconditioners are based on the multifrontal direct methods. The proposed method is compared to the incomplete LU factorization (ILU) based preconditioned iterative methods and other conventional direct linear sparse solvers. The comparison shows the proposed method achieves great computational efficiency relative to these other methods.

[1]  Timothy A. Davis,et al.  Algorithm 837: AMD, an approximate minimum degree ordering algorithm , 2004, TOMS.

[2]  M. Pai,et al.  Iterative solver techniques in the dynamic simulation of power systems , 2000, 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134).

[3]  Alex Pothen,et al.  A Scalable Parallel Algorithm for Incomplete Factor Preconditioning , 2000, SIAM J. Sci. Comput..

[4]  Peter W. Sauer,et al.  A preconditioned iterative solver for dynamic simulation of power systems , 1995, Proceedings of ISCAS'95 - International Symposium on Circuits and Systems.

[5]  Lloyd N. Trefethen,et al.  How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..

[6]  Timothy A. Davis,et al.  A column approximate minimum degree ordering algorithm , 2000, TOMS.

[7]  V. Ajjarapu,et al.  A decoupled time-domain Simulation method via Invariant subspace partition for power system analysis , 2006, IEEE Transactions on Power Systems.

[8]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[9]  J.J. Sanchez-Gasca,et al.  Variable time step, implicit integration for extended-term power system dynamic simulation , 1995, Proceedings of Power Industry Computer Applications Conference.

[10]  Iain S. Duff,et al.  Combining direct and iterative methods for the solution of large systems in different application areas , 2004 .

[11]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[12]  Anshul Gupta,et al.  Recent advances in direct methods for solving unsymmetric sparse systems of linear equations , 2002, TOMS.

[13]  H. V. D. Vorst,et al.  Iterative solution methods for certain sparse linear systems with a non-symmetric matrix arising from PDE-problems☆ , 1981 .

[14]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[15]  A. Bihain,et al.  The mixed Adams-BDF variable step size algorithm to simulate transient and long term phenomena in power systems , 1994 .

[16]  J.D. McCalley,et al.  Multifrontal Solver for Online Power System Time-Domain Simulation , 2008, IEEE Transactions on Power Systems.

[17]  Anne Greenbaum,et al.  Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..

[18]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[19]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[20]  M. A. Pai,et al.  Iterative solver techniques in large scale power system computation , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[21]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[22]  Mohammad Shahidehpour,et al.  The IEEE Reliability Test System-1996. A report prepared by the Reliability Test System Task Force of the Application of Probability Methods Subcommittee , 1999 .

[23]  Peter W. Sauer,et al.  Iterative solver techniques in fast dynamic calculations of power systems , 2001 .

[24]  John R. Gilbert,et al.  Sparse Matrices in MATLAB: Design and Implementation , 1992, SIAM J. Matrix Anal. Appl..

[25]  M. Berzins,et al.  An adaptive theta method for the solution of stiff and nonstiff differential equations , 1992 .

[26]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[27]  James S. T'ien,et al.  Development of Direct Multifrontal Solvers for Combustion Problems , 2008 .

[28]  Y. Saad,et al.  Experimental study of ILU preconditioners for indefinite matrices , 1997 .

[29]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[30]  Probability Subcommittee,et al.  IEEE Reliability Test System , 1979, IEEE Transactions on Power Apparatus and Systems.

[31]  Henk A. van der Vorst,et al.  Parallel incomplete factorizations with pseudo-overlapped subdomains , 2001, Parallel Comput..

[32]  Norman E. Gibbs,et al.  Algorithm 508: Matrix Bandwidth and Profile Reduction [F1] , 1976, TOMS.

[33]  Timothy A. Davis,et al.  A combined unifrontal/multifrontal method for unsymmetric sparse matrices , 1999, TOMS.

[34]  Mariesa L. Crow,et al.  The multirate method for simulation of power system dynamics , 1994 .

[35]  J. S. WARSA,et al.  Solution ofthe Discontinuous P1 Equations in Two-Dimensional Cartesian Geometry with Two-Level Preconditioning , 2002, SIAM J. Sci. Comput..