High-precision 40Ar/39Ar dating of Pleistocene Tuffs and temporal anchoring of the Matuyama-Brunhes Boundary

[1]  P. Renne,et al.  Intercalibration and age of the Alder Creek sanidine 40 Ar/ 39 Ar standard Quaternary Geochronology , 2017 .

[2]  P. Renne,et al.  Intercalibration and age of the Alder Creek sanidine 40Ar/39Ar standard , 2017 .

[3]  G. Scardia,et al.  How fast was the Matuyama-Brunhes geomagnetic reversal? A new subcentennial record from the Sulmona Basin, central Italy , 2016 .

[4]  Klaudia Beich Geochronology And Thermochronology By The 40ar39ar Method , 2016 .

[5]  C. Magee,et al.  The U-Th-Pb systematics of zircon from the Bishop Tuff: A case study in challenges to high-precision Pb/U geochronology at the millennial scale , 2015 .

[6]  U. Schaltegger,et al.  Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions , 2015, Scientific Reports.

[7]  A. Calvert,et al.  Age of the Lava Creek supereruption and magma chamber assembly at Yellowstone based on 40Ar/39Ar and U‐Pb dating of sanidine and zircon crystals , 2015 .

[8]  R. Drysdale,et al.  Duration and dynamics of the best orbital analogue to the present interglacial , 2015 .

[9]  G. Sun,et al.  The footprint of urban heat island effect in China , 2015, Scientific Reports.

[10]  K. Kawamura,et al.  Age of Matuyama-Brunhes boundary constrained by U-Pb zircon dating of a widespread tephra , 2015 .

[11]  C. Laj,et al.  A combined paleomagnetic/dating investigation of the upper Jaramillo transition from a volcanic section at Tenerife (Canary Islands) , 2014 .

[12]  G. Scardia,et al.  Extremely rapid directional change during Matuyama-Brunhes geomagnetic polarity reversal , 2014 .

[13]  L. Tang,et al.  The Matuyama–Brunhes polarity reversal in four Chinese loess records: high-fidelity recording of geomagnetic field behavior or a less than reliable chronostratigraphic marker? , 2014 .

[14]  F. Lopes,et al.  Geomagnetic, cosmogenic and climatic changes across the last geomagnetic reversal from Equatorial Indian Ocean sediments , 2014 .

[15]  Weijian Zhou,et al.  Timing of the Brunhes-Matuyama magnetic polarity reversal in Chinese loess using 10Be , 2014 .

[16]  D. Barfod,et al.  A high-precision 40Ar/39Ar age for the Young Toba Tuff and dating of ultra-distal tephra: Forcing of Quaternary climate and implications for hominin occupation of India , 2014 .

[17]  M. Storey,et al.  An astronomical age for the Bishop Tuff and concordance with radioisotopic dates , 2014 .

[18]  Frank D. Wood,et al.  A New Approach to Probabilistic Programming Inference , 2014, AISTATS.

[19]  T. Ireland,et al.  New Perspectives on the Bishop Tuff from Zircon Textures, Ages and Trace Elements , 2014 .

[20]  P. Renne,et al.  Assimilation of preexisting Pleistocene intrusions at Long Valley by periodic magma recharge accelerates rhyolite generation: rethinking the remelting model , 2014, Contributions to Mineralogy and Petrology.

[21]  B. Singer A Quaternary geomagnetic instability time scale , 2013 .

[22]  D. Barfod,et al.  Multiple interpretive errors? Indeed. Reply to: Climate effects of the 74 ka Toba super-eruption: Multiple interpretive errors in ‘A high-precision 40Ar/39Ar age for the Young Toba Tuff and dating of ultra-distal tephra’ by Michael Haslam , 2013 .

[23]  D. Barfod,et al.  Argon extraction from geological samples by CO2 scanning laser step-heating , 2013 .

[24]  D. Barfod,et al.  FCs-EK: a new sampling of the Fish Canyon Tuff 40Ar/39Ar neutron flux monitor , 2013 .

[25]  D. Günther,et al.  Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption , 2013 .

[26]  P. Renne Some footnotes to the optimization-based calibration of the 40Ar/39Ar system , 2013 .

[27]  R. Staff,et al.  Bayesian age-depth modelling of Late Quaternary deposits from Wet and Blanche Caves, Naracoorte, South Australia: A framework for comparative faunal analyses , 2013 .

[28]  Christopher Bronk Ramsey,et al.  Recent and Planned Developments of the Program OxCal , 2013, Radiocarbon.

[29]  M. Storey,et al.  Age intercalibration of 40Ar/39Ar sanidine and chemically distinct U/Pb zircon populations from the Alder Creek Rhyolite Quaternary geochronology standard , 2013 .

[30]  C. Ramsey,et al.  Identification and correlation of visible tephras in the Lake Suigetsu SG06 sedimentary archive, Japan: chronostratigraphic markers for synchronising of east Asian/west Pacific palaeoclimatic records across the last 150 ka , 2013 .

[31]  T. Haraguchi,et al.  The multiple chronological techniques applied to the Lake Suigetsu SG06 sediment core, central Japan , 2013 .

[32]  C. Ramsey,et al.  Calibration for Archaeological and Environmental Terrestrial Samples in the Time Range 26–50 ka cal BP , 2013, Radiocarbon.

[33]  P. Renne,et al.  Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary , 2013, Science.

[34]  C. Ramsey,et al.  An automated method for varve interpolation and its application to the Late Glacial chronology from Lake Suigetsu, Japan , 2012 .

[35]  M. Storey,et al.  Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary records , 2012, Proceedings of the National Academy of Sciences.

[36]  Finlay M. Stuart,et al.  New high-precision measurements of the isotopic composition of atmospheric argon , 2011 .

[37]  M. Hyodo,et al.  High-resolution record of the Matuyama–Brunhes transition constrains the age of Javanese Homo erectus in the Sangiran dome, Indonesia , 2011, Proceedings of the National Academy of Sciences.

[38]  M. Storey,et al.  A Refined Astronomically Calibrated 40Ar/39Ar Age for Fish Canyon Sanidine , 2011 .

[39]  D. Heslop,et al.  Post-depositional remanent magnetization lock-in for marine sediments deduced from 10 Be and paleomagnetic records through the Matuyama-Brunhes boundary , 2011 .

[40]  C. Ramsey,et al.  Toward establishing precise 40Ar/39Ar chronologies for Late Pleistocene palaeoclimate archives: an example from the Lake Suigetsu (Japan) sedimentary record , 2011 .

[41]  P. Renne,et al.  Response to the comment by W.H. Schwarz et al. on Joint determination of 40K decay constants and 40 , 2011 .

[42]  Qingsong Liu,et al.  Remagnetization mechanism and a new age model for L9 in Chinese loess , 2011 .

[43]  P. Olson Laboratory experiments on the dynamics of the core , 2011 .

[44]  D. Hodell,et al.  Reconciling astrochronological and 40Ar/39Ar ages for the Matuyama‐Brunhes boundary and late Matuyama Chron , 2010 .

[45]  P. Renne,et al.  Joint determination of 40K decay constants and 40Ar∗/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology , 2010 .

[46]  Y. Yokoyama,et al.  10Be evidence for delayed acquisition of remanent magnetization in marine sediments: Implication for a new age for the Matuyama–Brunhes boundary , 2010 .

[47]  F. Lehmkuhl,et al.  Timing and provenance of loess in the Sichuan Basin, southwestern China , 2010 .

[48]  D. Huddart,et al.  Dating of the Valsequillo volcanic deposits: resolution of an ongoing archaeological controversy in Central Mexico. , 2010, Journal of human evolution.

[49]  P. Renne,et al.  for the Fish Canyon sanidine standard, and improved accuracy for 40 Ar/ 39 Ar geochronology , 2010 .

[50]  M. Raymo,et al.  Diachronous benthic δ18O responses during late Pleistocene terminations , 2009 .

[51]  P. Renne,et al.  The isotopic composition of atmospheric argon and 40Ar/39Ar geochronology: Time for a change? , 2009 .

[52]  D. Hodell,et al.  Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500) , 2009 .

[53]  A. Roberts,et al.  Post-depositional remanent magnetization lock-in and the location of the Matuyama-Brunhes geomagnetic reversal boundary in marine and Chinese loess sequences , 2008 .

[54]  P. Renne,et al.  Cl-derived argon isotope production in the CLICIT facility of OSTR reactor and the effects of the Cl-correction in 40Ar/39Ar geochronology , 2008 .

[55]  P. Renne,et al.  Synchronizing Rock Clocks of Earth History , 2008, Science.

[56]  P. Renne,et al.  Implications of pre-eruptive magmatic histories of zircons for U–Pb geochronology of silicic extrusions , 2008 .

[57]  C. Ramsey Deposition models for chronological records , 2008 .

[58]  S. Bowring,et al.  U-Pb dating of zircon in the Bishop Tuff at the millennial scale , 2007 .

[59]  T. Stocker,et al.  Direct north-south synchronization of abrupt climate change record in ice cores using Beryllium 10 , 2007 .

[60]  Kenji Kawamura,et al.  The EDC3 chronology for the EPICA Dome C ice core , 2007 .

[61]  M. Kumazawa,et al.  Advanced Micro-XRF Method to Separate Sedimentary Rhythms and Event Layers in Sediments: Its Application to Lacustrine Sediment from Lake Suigetsu, Japan , 2007 .

[62]  Karl Fabian,et al.  Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: Iterative Bayesian inversion and independent verification , 2007 .

[63]  Zhiming Sun,et al.  A magnetostratigraphic reassessment of correlation between Chinese loess and marine oxygen isotope records over the last 1.1 Ma , 2006 .

[64]  J. Shulmeister,et al.  Inter-hemispheric linkages in climate change: paleo-perspectives for future climate change , 2006 .

[65]  J. Severinghaus,et al.  A redetermination of the isotopic abundances of atmospheric Ar , 2006 .

[66]  F. Guichard,et al.  Distant origin of circulation changes in the Indian Ocean during the last deglaciation , 2006 .

[67]  K. Herwig,et al.  MPI‐DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios , 2006 .

[68]  C. Koeberl,et al.  Australasian microtektites and associated impact ejecta in the South China Sea and the Middle Pleistocene supereruption of Toba , 2006 .

[69]  J. Smit,et al.  ANALYSIS OF THE AUSTRALASIAN MICROTEKTITE EVENT , THE TOBA LAKE EVENT , AND THE CRETACEOUS / PALEOGENE BOUNDARY , EASTERN INDIAN OCEAN , 2006 .

[70]  J. Gee,et al.  LOWER JARAMILLO POLARITY TRANSITION RECORDS FROM THE EQUATORIAL ATLANTIC AND INDIAN OCEANS , 2006 .

[71]  Lionel Carter,et al.  Towards a climate event stratigraphy for New Zealand over the past 30 000 years (NZ‐INTIMATE project) , 2007 .

[72]  J. Duplessy,et al.  Changes in deep water hydrology during the Last Deglaciation , 2005 .

[73]  M. Reid,et al.  The pace of rhyolite differentiation and storage in an 'archetypical' silicic magma system, Long Valley, California [rapid communication] , 2005 .

[74]  P. Renne,et al.  Alder Creek sanidine (ACs-2): A Quaternary 40Ar/39Ar dating standard tied to the Cobb Mountain geomagnetic event , 2005 .

[75]  B. Jicha,et al.  Structural and temporal requirements for geomagnetic field reversal deduced from lava flows , 2005, Nature.

[76]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[77]  N. Shackleton,et al.  An Atlantic lead over Pacific deep-water change across Termination I: implications for the application of the marine isotope stage stratigraphy , 2005 .

[78]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[79]  A. Roberts,et al.  Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling , 2004 .

[80]  Xixi Zhao,et al.  Matuyama-Brunhes reversal and Kamikatsura event on Maui: paleomagnetic directions, 40 Ar/ 39 Ar ages and implications , 2004 .

[81]  B. Clement Dependence of the duration of geomagnetic polarity reversals on site latitude , 2004, Nature.

[82]  K. Wei,et al.  First Toba supereruption revival , 2004 .

[83]  Chien-Chih Chen,et al.  First Toba supereruption revival: Comment and Reply REPLY , 2004 .

[84]  S. Self,et al.  First Toba supereruption revival: Comment and Reply COMMENT , 2004 .

[85]  T. Stocker,et al.  A minimum thermodynamic model for the bipolar seesaw , 2003 .

[86]  F. Parrenin,et al.  Amplitude and phase of glacial cycles from a conceptual model , 2003 .

[87]  K. Wei,et al.  Astronomically calibrated ages for geomagnetic reversals within the Matuyama chron , 2002 .

[88]  M. Lanphere,et al.  Precise K–Ar, 40Ar/39Ar, Rb–Sr and U/Pb mineral ages from the 27.5 Ma Fish Canyon Tuff reference standard , 2001 .

[89]  P. Renne,et al.  Determination of the half-life of 37Ar by mass spectrometry , 2001 .

[90]  Robert L. Christiansen,et al.  The Quaternary and Pliocene Yellowstone plateau volcanic field of Wyoming, Idaho, and Montana , 2001 .

[91]  J. Wijbrans,et al.  New 40Ar/39Ar age of the Bishop Tuff from multiple sites and sediment rate calibration for the Matuyama-Brunhes boundary , 2000 .

[92]  M. Reid,et al.  In situ U-Pb ages of zircons from the Bishop Tuff: No evidence for long crystal residence times , 2000 .

[93]  Jennifer Hayes Clark,et al.  Mid-Pleistocene Acheulean-like stone technology of the Bose basin, South China. , 2000, Science.

[94]  A. T. Anderson,et al.  Evolution of Bishop Tuff Rhyolitic Magma Based on Melt and Magnetite Inclusions and Zoned Phenocrysts , 2000 .

[95]  P. Renne,et al.  A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite , 2000 .

[96]  T. Dobeneck,et al.  Geomagnetic Events and Relative Paleointensity Records - Clues to High-Resolution Paleomagnetic Chronostratigraphies of Late Quaternary Marine Sediments? , 1999 .

[97]  J. Lowe,et al.  An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group , 1998 .

[98]  Wallace S. Broecker,et al.  PALEOCEAN CIRCULATION DURING THE LAST DEGLACIATION : A BIPOLAR SEESAW ? , 1998 .

[99]  P. Renne,et al.  Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating , 1998 .

[100]  S. Carey Influence of convective sedimentation on the formation of widespread tephra fall layers in the deep sea , 1997 .

[101]  Colin J. N. Wilson,et al.  The Bishop Tuff: New Insights From Eruptive Stratigraphy , 1997, The Journal of Geology.

[102]  Cor G. Langereis,et al.  Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes , 1997 .

[103]  T. Herbert,et al.  Astronomical calibration of the Matuyama-Brunhes boundary: Consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences , 1996 .

[104]  B. Singer,et al.  Age and duration of the Matuyama-Brunhes geomagnetic polarity reversal from , 1996 .

[105]  L. Tauxe,et al.  A precursor to the Matuyama/Brunhes transition-field instability as recorded in pelagic sediments , 1996 .

[106]  M. Williams,et al.  Reply to Comments by S. Mishra and S. N. Rajaguru on “New Geochemical Evidence for the Youngest Toba Tuff in India” , 1995, Quaternary Research.

[107]  J. Farrell,et al.  Laser 40Ar39Ar ages of tephra from Indian Ocean deep-sea sediments: Tie points for the astronomical and geomagnetic polarity time scales , 1995 .

[108]  W. Prell,et al.  Timescale and paleoceanographic implications of a 3.6 m.y. oxygen isotope record from the northeast Indian Ocean (Ocean Drilling Program Site 758) , 1995 .

[109]  D. Kent,et al.  Correlation of paleointensity variation records in the Brunhes/Matuyama polarity transition interval , 1995 .

[110]  J. Laskar,et al.  Stabilization of the Earth's obliquity by the Moon , 1993, Nature.

[111]  V. Hsu,et al.  40Ar/39Ar Dating of the Brunhes-Matuyama Geomagnetic Field Reversal , 1992, Science.

[112]  J. Farrell,et al.  Late Neogene Paleoceanography and Paleoclimatology of the Northeast Indian Ocean (Site 758) , 1991 .

[113]  Jonathan Dehn,et al.  Neogene Tephrochronology from Site 758 of the Northern Ninetyeast Ridge: Indonesian Arc Volcanism of the Past 5 Ma , 1991 .

[114]  W. Rose,et al.  Stratigraphy of the Toba Tuffs and the evolution of the Toba Caldera Complex, Sumatra, Indonesia , 1991 .

[115]  J. Duplessy,et al.  How fast did the ocean—atmosphere system run during the last deglaciation? , 1991 .

[116]  W. Rose,et al.  Eruptive history of Earth's largest Quaternary caldera (Toba, Indonesia) clarified , 1991 .

[117]  J. Smit,et al.  25. ANALYSIS OF THE AUSTRALASIAN MICROTEKTITE EVENT, THE TOBA LAKE EVENT, AND THE CRETACEOUS/PALEOGENE BOUNDARY, EASTERN INDIAN OCEAN1 , 1991 .

[118]  J. Gee,et al.  17. LOWER JARAMILLO POLARITY TRANSITION RECORDS FROM THE EQUATORIAL ATLANTIC AND INDIAN OCEANS , 1991 .

[119]  André Berger,et al.  An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677 , 1990, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[120]  G. B. Dalrymple Geochronology and Thermochronology by the 40Ar39Ar Method: Ian McDougall and T. Mark Harrison. Oxford University Press, 1988, 212p., U.S. $55.00 (ISBN 0-19-504302-2) , 1989 .

[121]  Jan Backman,et al.  Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean , 1989 .

[122]  T. Onstott,et al.  No short reversals of Brunhes Age recorded in the Toba Tuffs, north Sumatra, Indonesia , 1987 .

[123]  J. D. Hays,et al.  Age Dating and the Orbital Theory of the Ice Ages: Development of a High-Resolution 0 to 300,000-Year Chronostratigraphy , 1987, Quaternary Research.

[124]  G. Walker,et al.  Stratigraphy, paleomagnetism, and magnetic fabric of the Toba Tuffs: Constraints on the sources and eruptive styles , 1986 .

[125]  H. Takeda Mineralogy of Yamato 791073 with reference to crystal fractionation of the howardite parent body , 1986 .

[126]  J. D. Hays,et al.  The orbital theory of Pleistocene climate : Support from a revised chronology of the marine δ^ O record. , 1984 .

[127]  R. G. Johnson Brunhes-Matuyama Magnetic Reversal Dated at 790,000 yr B.P. by Marine-Astronomical Correlations , 1982, Quaternary Research.

[128]  J. A. Norberg,et al.  Reference Samples for Electron Microprobe Analysis , 1980 .

[129]  John Z. Imbrie,et al.  Modeling the Climatic Response to Orbital Variations , 1980, Science.

[130]  H. Freeland,et al.  Variations in the Earth's Orbit: Pacemaker of the Ice Ages? , 1977, Science.

[131]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[132]  J. D. Hays,et al.  Variations in the Earth ' s Orbit : Pacemaker of the Ice Ages Author ( s ) : , 2022 .

[133]  D. Kent Paleomagnetism of Some Neogene Sedimentary Rocks on Oga Peninsula, Japan , 1973 .

[134]  J. R. Walton,et al.  The Isotopic Composition of Atmospheric Neon , 1966 .

[135]  R. Stoenner,et al.  Half-Lives of Argon-37, Argon-39, and Argon-42 , 1965, Science.

[136]  Milutin Milanković Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen , 1930 .

[137]  M. Rampino,et al.  First Toba supereruption revival : Comment and Reply , 2022 .