Structure-induced enhancement of thermal conductivities in electrospun polymer nanofibers.

Polymers that are thermally insulating in bulk forms have been found to exhibit higher thermal conductivities when stretched under tension. This enhanced heat transport performance is believed to arise from the orientational alignment of the polymer chains induced by tensile stretching. In this work, a novel high-sensitivity micro-device platform was employed to determine the axial thermal conductivity of individual Nylon-11 polymer nanofibers fabricated by electrospinning and post-stretching. Their thermal conductivity showed a correlation with the crystalline morphology measured by high-resolution wide-angle X-ray scattering. The relationship between the nanofiber internal structures and thermal conductivities could provide insights into the understanding of phonon transport mechanisms in polymeric systems and also guide future development of the fabrication and control of polymer nanofibers with extraordinary thermal performance and other desired properties.

[1]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[2]  K. Nakamae,et al.  Elastic moduli of the crystal lattices of polymers , 2007 .

[3]  Jun Li,et al.  Thermal Contact Resistance and Thermal Conductivity of a Carbon Nanofiber , 2006 .

[4]  Philip J. Cox,et al.  Physical properties of polymers handbook , 1997 .

[5]  T. Sun,et al.  The dedicated high-resolution grazing-incidence X-ray scattering beamline 8-ID-E at the Advanced Photon Source. , 2012, Journal of synchrotron radiation.

[6]  Seeram Ramakrishna,et al.  An Introduction to Electrospinning and Nanofibers (Paperback) , 2005 .

[7]  R. Porter,et al.  Super-drawing of ultrahigh molecular weight polyethylene. 1. Effect of techniques on drawing of single crystal mats , 1988 .

[8]  Li Shi,et al.  Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device , 2003 .

[9]  E. Thomas,et al.  Low-voltage, high-resolution scanning electron microscopy: a new characterization technique for polymer morphology , 1995 .

[10]  I. Ward,et al.  Ultra-high-modulus linear polyethylene through controlled molecular weight and drawing , 1975 .

[11]  Li Shi,et al.  Reexamination of thermal transport measurements of a low-thermal conductance nanowire with a suspended micro-device. , 2013, The Review of scientific instruments.

[12]  K. Pae,et al.  High pressure melting and crystallization of Nylon-11 , 1985 .

[13]  J. Xiang,et al.  Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge. , 2012, The Review of scientific instruments.

[14]  Darrell H. Reneker,et al.  Electrospinning jets and polymer nanofibers , 2008 .

[15]  J. Scheinbeim,et al.  Ferroelectric polarization mechanisms in nylon 11 , 1992 .

[16]  J. Jog,et al.  Preparation and characterization of electrospun fibers of Nylon 11 , 2008 .

[17]  Gang Chen,et al.  Polyethylene nanofibres with very high thermal conductivities. , 2010, Nature nanotechnology.

[18]  J. Visser,et al.  Van der Waals and other cohesive forces affecting powder fluidization , 1989 .

[19]  D. Cahill,et al.  Thermal Conductivity of High-Modulus Polymer Fibers , 2013 .

[20]  Jie Kong,et al.  High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique , 2011 .

[21]  A. Kawaguchi,et al.  Polymorphism in lamellar single crystals of nylon 11 , 1981 .

[22]  Gang Chen,et al.  High thermal conductivity of single polyethylene chains using molecular dynamics simulations. , 2008, Physical review letters.

[23]  A. Ajji,et al.  Uniaxial deformation of nylon-6 and nylon-11: changes in orientation and crystal phase , 1998 .

[24]  N. S. Murthy,et al.  General procedure for evaluating amorphous scattering and crystallinity from X-ray diffraction scans of semicrystalline polymers , 1990 .

[25]  B. Wunderlich,et al.  Heat capacities of solid polyamides , 1990 .

[26]  H. Fong,et al.  Investigation of post-spinning stretching process on morphological, structural, and mechanical properties of electrospun polyacrylonitrile copolymer nanofibers , 2011 .

[27]  Li Shi,et al.  Thermal Conductivity Measurements of Nylon 11-Carbon Nanofiber Nanocomposites , 2005 .

[28]  P. Dashora,et al.  On the temperature dependence of the thermal conductivity of linear amorphous polymers , 1996 .

[29]  N. Bonanos,et al.  Electrical conductivity studies in nylon 11 , 2000 .

[30]  K. Pae,et al.  A high‐pressure x‐ray study of Nylon 11 , 1977 .

[31]  Stephen Z. D. Cheng,et al.  Simultaneously strong and tough ultrafine continuous nanofibers. , 2013, ACS nano.

[32]  M. M. Yovanovich,et al.  Thermal resistance of cylinder-flat contacts: Theoretical analysis and experimental verification of a line-contact model , 1985 .

[33]  J. Lloyd,et al.  Enhancement of Thermal Energy Transport Across Graphene/Graphite and Polymer Interfaces: A Molecular Dynamics Study , 2012 .

[34]  Jeffery R. Owens,et al.  Nanoporous artificial proboscis for probing minute amount of liquids. , 2011, Nanoscale.

[35]  A. Thompson,et al.  1D-to-3D transition of phonon heat conduction in polyethylene using molecular dynamics simulations , 2010 .

[36]  Peter Beike,et al.  Intermolecular And Surface Forces , 2016 .

[37]  Darrell H. Reneker,et al.  Beaded nanofibers formed during electrospinning , 1999 .

[38]  Oleg Gendelman,et al.  Effect of supramolecular structure on polymer nanofibre elasticity. , 2007, Nature nanotechnology.

[39]  A. Henry,et al.  Molecular dynamics simulation of thermal energy transport in polydimethylsiloxane , 2011 .

[40]  C. Choy,et al.  Thermal diffusivity and conductivity of crystalline polymers , 1981 .

[41]  C. Lim,et al.  Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers , 2008 .

[42]  Thermal conduction in classical low-dimensional lattices , 2001, cond-mat/0112193.

[43]  Ronggui Yang,et al.  Tuning the thermal conductivity of polymers with mechanical strains , 2010 .

[44]  Teng Zhang,et al.  High-contrast, reversible thermal conductivity regulation utilizing the phase transition of polyethylene nanofibers. , 2013, ACS nano.

[45]  Tadahiro Sasaki Notes on the polymorphism in nylon 11 , 1965 .

[46]  C. Pellerin,et al.  Molecular Orientation in Electrospun Fibers: From Mats to Single Fibers , 2013 .

[47]  J. Langford,et al.  Scherrer after sixty years: a survey and some new results in the determination of crystallite size , 1978 .

[48]  Younan Xia,et al.  Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays , 2003 .

[49]  C. L. Choy,et al.  Elastic modulus and thermal conductivity of ultradrawn polyethylene , 1999 .

[50]  H. Kilian,et al.  Thermal conductivity in ultraoriented polyethylene , 1992 .

[51]  Timon Rabczuk,et al.  Superior thermal conductivity and extremely high mechanical strength in polyethylene chains from {\it ab initio} calculation , 2012, 1203.3369.

[52]  I. Puri,et al.  Modifying thermal transport in electrically conducting polymers: effects of stretching and combining polymer chains. , 2012, The Journal of chemical physics.

[53]  H. Starkweather,et al.  Effect of spherulites on the mechanical properties of nylon 66 , 1959 .

[54]  A. Henry,et al.  Anomalous heat conduction in polyethylene chains: Theory and molecular dynamics simulations , 2009 .

[55]  P. J. Lemstra,et al.  Ultra-high-strength polyethylene filaments by solution spinning/drawing , 1980 .

[56]  Renkun Chen,et al.  Sub-picowatt/kelvin resistive thermometry for probing nanoscale thermal transport. , 2013, The Review of scientific instruments.

[57]  T. Ashworth,et al.  Use of the linear heat flow for poor conductors and its application to the thermal conductivity of nylon , 1973 .

[58]  R. Dersch,et al.  Orientation analysis of individual electrospun PE nanofibers by transmission electron microscopy , 2010 .

[59]  F. Giesselmann,et al.  Orientational order in smectic liquid-crystalline phases of amphiphilic diols. , 2005, The Journal of chemical physics.

[60]  E. Frollini,et al.  Thermal conductivity of polymers by hot‐wire method , 1996 .

[61]  Chang Q. Sun,et al.  Size, temperature, and bond nature dependence of elasticity and its derivatives on extensibility, Debye temperature, and heat capacity of nanostructures , 2007 .

[62]  Geoffrey R. Mitchell,et al.  Development of orientation during electrospinning of fibres of poly(ε-caprolactone) , 2010 .

[63]  G. Bowlin,et al.  Thermal and mechanical properties of electrospun PMMA, PVC, Nylon 6, and Nylon 6,6 , 2008 .

[64]  C. Choy,et al.  Thermal conductivity of gel‐spun polyethylene fibers , 1993 .

[65]  Stephen Z. D. Cheng,et al.  Crystal transitions of Nylon 11 under drawing and annealing , 2001 .

[66]  Darrell H. Reneker,et al.  Bending instability in electrospinning of nanofibers , 2001 .