Progression age enhanced backward bifurcation in an epidemic model with super-infection

Abstract. We consider a model for a disease with a progressing and a quiescent exposed class and variable susceptibility to super-infection. The model exhibits backward bifurcations under certain conditions, which allow for both stable and unstable endemic states when the basic reproduction number is smaller than one.

[1]  A. J. Hall Infectious diseases of humans: R. M. Anderson & R. M. May. Oxford etc.: Oxford University Press, 1991. viii + 757 pp. Price £50. ISBN 0-19-854599-1 , 1992 .

[2]  S. Blower,et al.  Control Strategies for Tuberculosis Epidemics: New Models for Old Problems , 1996, Science.

[3]  Maia Martcheva,et al.  Vaccination strategies and backward bifurcation in an age-since-infection structured model. , 2002, Mathematical biosciences.

[4]  Simon A. Levin,et al.  The dynamics of cocirculating influenza strains conferring partial cross-immunity , 1997, Journal of mathematical biology.

[5]  P van den Driessche,et al.  Backward bifurcation in epidemic control. , 1997, Mathematical biosciences.

[6]  N. Ling The Mathematical Theory of Infectious Diseases and its applications , 1978 .

[7]  S. Levin,et al.  Dynamical behavior of epidemiological models with nonlinear incidence rates , 1987, Journal of mathematical biology.

[8]  Carlos Castillo-Chavez,et al.  MATHEMATICAL MODELS FOR THE DISEASE DYNAMICS OF TUBERCULOSIS , 1996 .

[9]  J. Velasco-Hernández,et al.  A simple vaccination model with multiple endemic states. , 2000, Mathematical biosciences.

[10]  D Greenhalgh,et al.  Subcritical endemic steady states in mathematical models for animal infections with incomplete immunity. , 2000, Mathematical biosciences.

[11]  Horst R. Thieme,et al.  Semiflows generated by Lipschitz perturbations of non-densely defined operators , 1990, Differential and Integral Equations.

[12]  S. Blower,et al.  The intrinsic transmission dynamics of tuberculosis epidemics , 1995, Nature Medicine.

[13]  S. Blower,et al.  Quantifying the intrinsic transmission dynamics of tuberculosis. , 1998, Theoretical population biology.

[14]  R. Nagel,et al.  One-parameter Semigroups of Positive Operators , 1986 .

[15]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[16]  K. Dietz,et al.  Mathematical models for transmission and control of malaria. , 1988 .

[17]  C. Castillo-Chavez,et al.  To treat or not to treat: the case of tuberculosis , 1997, Journal of mathematical biology.

[18]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[19]  Mimmo Iannelli,et al.  Mathematical Theory of Age-Structured Population Dynamics , 1995 .

[20]  D Greenhalgh,et al.  A mathematical treatment of AIDS and condom use. , 2001, IMA journal of mathematics applied in medicine and biology.

[21]  H. Hethcote A Thousand and One Epidemic Models , 1994 .

[22]  K. Hadeler,et al.  A core group model for disease transmission. , 1995, Mathematical biosciences.

[23]  P. van den Driessche,et al.  Epidemiological models with varying population size and dose-dependent latent period. , 1995, Mathematical biosciences.

[24]  Carlos Castillo-Chavez,et al.  Age-Structured Core Group Model and Its Impact on STD Dynamics , 2002 .

[25]  W. Desch,et al.  Linearized stability for nonlinear semigroups , 1986 .

[26]  H R Thieme,et al.  Uniform persistence and permanence for non-autonomous semiflows in population biology. , 2000, Mathematical biosciences.

[27]  C. Castillo-Chavez,et al.  A model for tuberculosis with exogenous reinfection. , 2000, Theoretical population biology.

[28]  Hal L. Smith Hopf Bifurcation in a System of Functional Equations Modeling the Spread of an Infectious Disease , 1983 .

[29]  Horst R. Thieme,et al.  The Transition Through Stages with Arbitrary Length Distributions, and Applications in Epidemics , 2002 .

[30]  Carlos Castillo-Chavez,et al.  Backwards bifurcations and catastrophe in simple models of fatal diseases , 1998, Journal of mathematical biology.

[31]  Frank C. Hoppensteadt,et al.  A problem in the theory of epidemics , 1970 .

[32]  James Watmough,et al.  A simple SIS epidemic model with a backward bifurcation , 2000, Journal of mathematical biology.

[33]  Dose-dependent latent period and periodicity of infectious diseases , 1993, Journal of mathematical biology.