A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces.

[1]  M. E. Sibert ELECTROCHEMICAL OXIDATION OF TITANIUM SURFACES , 1963 .

[2]  R. L. Aagard,et al.  Optical waveguide characteristics of reactive dc‐sputtered niobium pentoxide films , 1975 .

[3]  Jukka Lausmaa Surface spectroscopic characterization of titanium implant materials , 1996 .

[4]  Sachiko Ono,et al.  Self‐Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution , 1997 .

[5]  Y. Okazaki,et al.  Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V. , 1998, Biomaterials.

[6]  S. Steinemann Titanium--the material of choice? , 1998, Periodontology 2000.

[7]  H. Rack,et al.  Titanium alloys in total joint replacement--a materials science perspective. , 1998, Biomaterials.

[8]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[9]  Tadashi Kokubo,et al.  Apatite formation on surfaces of ceramics, metals and polymers in body environment , 1998 .

[10]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[11]  Mitsuo Niinomi,et al.  Mechanical properties of biomedical titanium alloys , 1998 .

[12]  Marc Aucouturier,et al.  Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach , 1999 .

[13]  Y. Okazaki A New Ti–15Zr–4Nb–4Ta alloy for medical applications , 2001 .

[14]  T Albrektsson,et al.  The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. , 2001, Medical engineering & physics.

[15]  Hiroki Habazaki,et al.  Anodic film growth on tantalum in dilute phosphoric acid solution at 20 and 85 °C , 2002 .

[16]  A. Mozalev,et al.  Nucleation and growth of the nanostructured anodic oxides on tantalum and niobium under the porous alumina film , 2003 .

[17]  M. Kikuchi,et al.  Mechanical properties and grindability of dental cast Ti-Nb alloys. , 2003, Dental materials journal.

[18]  Patrik Schmuki,et al.  Self-Organized Porous Titanium Oxide Prepared in H 2 SO 4 / HF Electrolytes , 2003 .

[19]  Masakazu Kawashita,et al.  Novel bioactive materials with different mechanical properties. , 2003, Biomaterials.

[20]  Zhengxiao Guo,et al.  Wear characteristics of Ti–Nb–Ta–Zr and Ti–6Al–4V alloys for biomedical applications , 2004 .

[21]  P. Chu,et al.  Surface modification of titanium, titanium alloys, and related materials for biomedical applications , 2004 .

[22]  Patrik Schmuki,et al.  Thick self-organized porous zirconium oxide formed in H2SO4/NH4F electrolytes , 2004 .

[23]  D. Velten,et al.  Biocompatible Nb2O5 thin films prepared by means of the sol–gel process , 2004, Journal of materials science. Materials in medicine.

[24]  M. Niinomi,et al.  Effects of Ta content on Young’s modulus and tensile properties of binary Ti–Ta alloys for biomedical applications , 2004 .

[25]  Sungho Jin,et al.  Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. , 2005, Biomaterials.

[26]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[27]  P. Schmuki,et al.  Porous Tantalum Oxide Prepared by Electrochemical Anodic Oxidation , 2005 .

[28]  Hiroki Habazaki,et al.  Nanoporous Anodic Niobium Oxide Formed in Phosphate/Glycerol Electrolyte , 2005 .

[29]  J. Macák,et al.  Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. , 2005, Journal of biomedical materials research. Part A.

[30]  J. Macák,et al.  Fabrication and characterization of smooth high aspect ratio zirconia nanotubes , 2005 .

[31]  Jan M. Macak,et al.  Titanium oxide nanotubes prepared in phosphate electrolytes , 2005 .

[32]  W. Smyrl,et al.  Zirconium Oxide Nanotubes Synthesized via Direct Electrochemical Anodization , 2005 .

[33]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[34]  Patrik Schmuki,et al.  Formation of self-organized niobium porous oxide on niobium , 2005 .

[35]  Patrik Schmuki,et al.  Self-organized high-aspect-ratio nanoporous zirconium oxides prepared by electrochemical anodization. , 2005, Small.

[36]  P. Schmuki,et al.  Self-assembled porous tantalum oxide prepared in H2SO4/HF electrolytes , 2005 .

[37]  Jan M. Macak,et al.  Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes , 2005 .

[38]  Eugeniu Balaur,et al.  Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes , 2005 .

[39]  Jan M. Macak,et al.  Smooth anodic TiO2 nanotubes. , 2005, Angewandte Chemie.

[40]  Longtu Li,et al.  Fabrication of titanium oxide nanotube arrays by anodic oxidation , 2005 .

[41]  Andrei Ghicov,et al.  TiO2-Nb2O5 nanotubes with electrochemically tunable morphologies. , 2006, Angewandte Chemie.

[42]  Lixia Yang,et al.  Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization , 2006 .

[43]  Sang Cheon Lee,et al.  Porous niobium oxide films prepared by anodization in HF/H3PO4 , 2006 .

[44]  Sungho Jin,et al.  Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. , 2006, Journal of biomedical materials research. Part A.

[45]  William H. Smyrl,et al.  Titanium Dioxide Nanotube Arrays Fabricated by Anodizing Processes Electrochemical Properties , 2006 .

[46]  Joshua J Jacobs,et al.  Experimental and clinical performance of porous tantalum in orthopedic surgery. , 2006, Biomaterials.

[47]  Patrik Schmuki,et al.  Initiation of tantalum oxide pores grown on tantalum by potentiodynamic anodic oxidation , 2006 .

[48]  L. Elias,et al.  Microstructural and mechanical characterization of biomedical Ti–Nb–Zr(–Ta) alloys , 2006 .

[49]  J. Macák,et al.  Nanotube oxide coating on Ti–29Nb–13Ta–4.6Zr alloy prepared by self-organizing anodization , 2006 .

[50]  Patrik Schmuki,et al.  TiO2 nanotubes : Tailoring the geometry in H3PO4/HF electrolytes , 2006 .

[51]  Peter Greil,et al.  Hydroxyapatite growth on anodic TiO2 nanotubes. , 2006, Journal of biomedical materials research. Part A.

[52]  J. Macák,et al.  Formation of Self-Organized Zirconia Nanostructure , 2006 .

[53]  J. Macák,et al.  Self-organization of anodic nanotubes on two size scales. , 2006, Small.

[54]  Rizhi Wang,et al.  Surface modifications of bone implants through wet chemistry , 2006 .

[55]  J. Macák,et al.  Anodic Oxide Nanotubes on Ti Alloys , 2007 .

[56]  A. Bandyopadhyay,et al.  Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. , 2007, Acta biomaterialia.

[57]  P. Schmuki,et al.  Formation of Self‐Organized Zirconium Titanate Nanotube Layers by Alloy Anodization , 2007 .

[58]  J. Macák,et al.  250 µm long anodic TiO2 nanotubes with hexagonal self‐ordering , 2007 .

[59]  Kouji Yasuda,et al.  TiO2 nanotubes: Self-organized electrochemical formation, properties and applications , 2007 .

[60]  Tejal A Desai,et al.  Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. , 2007, Biomaterials.

[61]  Kouji Yasuda,et al.  Electrochemical formation of self-organized zirconium titanate nanotube multilayers , 2007 .

[62]  Kouji Yasuda,et al.  Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes , 2007 .

[63]  Jinsub Choi,et al.  Porous niobium oxide films prepared by anodization–annealing–anodization , 2007 .

[64]  J. Macák,et al.  Electrochemical formation of self-organized anodic nanotube coating on Ti-28Zr-8Nb biomedical alloy surface. , 2008, Acta biomaterialia.

[65]  J. Delhalle,et al.  Multifunctional hybrid coating on titanium towards hydroxyapatite growth : electrodeposition of tantalum and its molecular functionalization with organophosphonic acids films , 2008 .

[66]  Y. Okazaki,et al.  Comparison of Bone Mineral Density and Area of Newly Formed Bone Around Ti-15%Zr-4%Nb-4%Ta Alloy and Ti-6%Al-4%V Alloy Implants , 2008 .

[67]  Tao Wang,et al.  HA coating on titanium with nanotubular anodized TiO2 intermediate layer via electrochemical deposition , 2008 .

[68]  S. Bauer,et al.  Enhanced self‐ordering of anodic ZrO2 nanotubes in inorganic and organic electrolytes using two‐step anodization , 2008 .

[69]  P. Schmuki,et al.  Formation of hexagonally ordered nanoporous anodic zirconia , 2008 .

[70]  M Navarro,et al.  Biomaterials in orthopaedics , 2008, Journal of The Royal Society Interface.

[71]  J. Macák,et al.  High aspect ratio ordered nanoporous Ta2O5 films by anodization of Ta , 2008 .

[72]  Anodic Porous and Tubular Oxide Layers on Ti Alloys , 2008 .

[73]  Mitsuo Niinomi,et al.  Mechanical biocompatibilities of titanium alloys for biomedical applications. , 2008, Journal of the mechanical behavior of biomedical materials.

[74]  J. Delhalle,et al.  Electrodeposition from Ionic Liquid of 2D Ordered Ta2O5 on Titanium Substrate Through a Polystyrene Template , 2009 .

[75]  N. Chawla,et al.  Tailoring TiO2 nanotube growth during anodic oxidation by crystallographic orientation of Ti , 2009 .

[76]  C. Lamarque,et al.  Titanium modified with layer-by-layer sol-gel tantalum oxide and an organodiphosphonic acid: a coating for hydroxyapatite growth. , 2009, Journal of colloid and interface science.

[77]  S. Bauer,et al.  Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays. , 2009, Integrative biology : quantitative biosciences from nano to macro.

[78]  V. S. Saji,et al.  Mechanical properties and corrosion resistance of low rigidity quaternary titanium alloy for biomedical applications , 2009 .

[79]  Jan M. Macak,et al.  Thick Self-Ordered Nanoporous Ta2O5 Films with Long-Range Lateral Order , 2009 .

[80]  Min Ho Lee,et al.  Influence of heat treatment on morphological changes of nano-structured titanium oxide formed by anodic oxidation of titanium in acidic fluoride solution. , 2009, Bio-medical materials and engineering.

[81]  Corrigendum to “Multifunctional hybrid coating on titanium towards hydroxyapatite growth: Electrodeposition of tantalum and its molecular functionalization with organophosphonic acids films” [Electrochim. Acta 53 (2008) 5632–5638] , 2009 .

[82]  J. Ringnalda,et al.  Processing and microstructure characterization of a novel porous hierarchical TiO_2 structure , 2009 .

[83]  A. Bandyopadhyay,et al.  TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. , 2009, Journal of biomedical materials research. Part A.

[84]  Sungho Jin,et al.  Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface. , 2009, Acta biomaterialia.

[85]  J. Delhalle,et al.  Fabrication of 2D ordered Ta2O5 films on a titanium substrate by electrodeposition of Ta from ionic liquid through a polystyrene template , 2009 .

[86]  Junjie Ding,et al.  Self-organized highly ordered TiO2 nanotubes in organic aqueous system , 2009 .

[87]  V. Birss,et al.  Controlled interconversion of nanoarray of ta dimples and high aspect ratio ta oxide nanotubes. , 2009, Nano letters.

[88]  S. Bauer,et al.  Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. , 2009, Journal of the American Chemical Society.

[89]  N. Tsuji,et al.  Metallurgical aspects on the formation of self-organized anodic oxide nanotube layers , 2009 .

[90]  Nikhilesh Chawla,et al.  Porous hierarchical TiO2 nanostructures: Processing and microstructure relationships , 2009 .

[91]  K. Kim,et al.  TiO2 nanotubes from stirred glycerol/NH4F electrolyte: Roughness, wetting behavior and adhesion for implant applications , 2009 .

[92]  N. Tsuji,et al.  Anodic oxide nanotube layers on Ti–Ta alloys: Substrate composition, microstructure and self-organization on two-size scales , 2009 .

[93]  Seonghoon Lee,et al.  A freestanding membrane of highly ordered anodic ZrO2 nanotube arrays , 2009, Nanotechnology.

[94]  N. Chawla,et al.  Nanomechanics of biocompatible TiO(2) nanotubes by Interfacial Force Microscopy (IFM). , 2009, Journal of the mechanical behavior of biomedical materials.

[95]  Krishna Kant,et al.  Tailoring the surface functionalities of titania nanotube arrays. , 2010, Biomaterials.

[96]  T. Sohmura,et al.  Biomimetic Fabrication of Apatite Related Biomaterials , 2010 .

[97]  Arndt F. Schilling,et al.  Advances in Porous Biomaterials for Dental and Orthopaedic Applications , 2010, Materials.

[98]  J. Weng,et al.  Hydroxyapatite coating on titanium surface with titania nanotube layer and its bond strength to substrate , 2010 .

[99]  Present and Future Trends in TiO2 Nanotubes Elaboration, Characterization and Potential Applications , 2010 .

[100]  J. Fojt,et al.  NANOSTRUCTURING OF TITANIUM FOR MEDICAL APPLICATIONS , 2010 .

[101]  P. Chu,et al.  Nanostructured Titania Coatings for Biological Applications: Fabrication and Characterization , 2011 .

[102]  M. Neo,et al.  Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments. , 2011, Acta biomaterialia.

[103]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.