On the State of Evolutionary Computation

In the past few years the evolutionary computation landscape has been rapidly changing as a result of increased levels of interaction between various research groups and the injection of new ideas which challenge old tenets. The effect has been simultaneously exciting, invigorating, annoying, and bewildering to the old-timers as well as the new-comers to the field. Emerging out of all of this activity are the beginnings of some structure, some common themes, and some agreement on important open issues. We attempt to summarize these emergent properties in this paper.

[1]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[2]  Bernard Manderick,et al.  The Genetic Algorithm and the Structure of the Fitness Landscape , 1991, ICGA.

[3]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[4]  L. Darrell Whitley,et al.  Delta Coding: An Iterative Search Strategy for Genetic Algorithms , 1991, ICGA.

[5]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[6]  Kalyanmoy Deb,et al.  Don't Worry, Be Messy , 1991, ICGA.

[7]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[8]  Gunar E. Liepins,et al.  Schema Disruption , 1991, ICGA.

[9]  Lawrence Davis,et al.  Adapting Operator Probabilities in Genetic Algorithms , 1989, ICGA.

[10]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[11]  Larry J. Eshelman,et al.  Preventing Premature Convergence in Genetic Algorithms by Preventing Incest , 1991, ICGA.

[12]  William M. Spears,et al.  Crossover or Mutation? , 1992, FOGA.

[13]  Terence C. Fogarty,et al.  Varying the Probability of Mutation in the Genetic Algorithm , 1989, ICGA.

[14]  W. Daniel Hillis,et al.  Co-evolving parasites improve simulated evolution as an optimization procedure , 1990 .

[15]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[16]  Clive Richards,et al.  The Blind Watchmaker , 1987, Bristol Medico-Chirurgical Journal.

[17]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[18]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[19]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[20]  Lashon B. Booker,et al.  Recombination Distributions for Genetic Algorithms , 1992, FOGA.

[21]  John H. Holland,et al.  Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems , 1995 .

[22]  C. G. Shaefer,et al.  The ARGOT Strategy: Adaptive Representation Genetic Optimizer Technique , 1987, ICGA.

[23]  Lashon B. Booker,et al.  Proceedings of the fourth international conference on Genetic algorithms , 1991 .

[24]  Nicholas J. Radcliffe,et al.  Forma Analysis and Random Respectful Recombination , 1991, ICGA.

[25]  J. David Schaffer,et al.  An Adaptive Crossover Distribution Mechanism for Genetic Algorithms , 1987, ICGA.

[26]  David E. Goldberg,et al.  Sizing Populations for Serial and Parallel Genetic Algorithms , 1989, ICGA.

[27]  Tariq Samad,et al.  Towards the Genetic Synthesisof Neural Networks , 1989, ICGA.

[28]  Lashon B. Booker,et al.  Intelligent Behavior as an Adaptation to the Task Environment , 1982 .