Crank-Nicolson Schemes for Optimal Control Problems with Evolution Equations

Crank--Nicolson methods are often used for the simulation of initial boundary value problems for parabolic partial differential equations. In this paper we present a family of discretizations for parabolic optimal control problems based on Crank--Nicolson schemes with different time discretizations for state $y$ and adjoint state $p$ so that discretization and optimization commute. One of these methods can also be explained as a Stormer--Verlet scheme in the context of geometric numerical integration of Hamiltonian systems. Two of the schemes may also be obtained as a Galerkin method with quadrature. Further we investigate the schemes for a variable time step size and prove second order convergence for this case if the time step size is chosen with respect to an arbitrary, sufficiently smooth mesh generating function.

[1]  K. Deckelnick,et al.  VARIATIONAL DISCRETIZATION OF PARABOLIC CONTROL PROBLEMS IN THE PRESENCE OF POINTWISE STATE CONSTRAINTS , 2010 .

[2]  Boris Vexler,et al.  Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems , 2007, SIAM J. Control. Optim..

[3]  Dominik Schötzau,et al.  Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..

[4]  William W. Hager,et al.  Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..

[5]  Alfio Borzì,et al.  Multigrid methods for parabolic distributed optimal control problems , 2003 .

[6]  M. Hinze,et al.  A space-time multigrid solver for distributed control of the time-dependent Navier-Stokes system , 2008 .

[7]  Arnd Rösch,et al.  Error Estimates for Parabolic Optimal Control Problems with Control Constraints , 2004 .

[8]  Thomas Slawig,et al.  Strategies for time-dependent PDE control using an integrated modeling and simulation environment. Part one: problems without inequality constraints , 2007 .

[9]  W. Hager Rates of Convergence for Discrete Approximations to Unconstrained Control Problems , 1976 .

[10]  Boris Vexler,et al.  Adaptivity with Dynamic Meshes for Space-Time Finite Element Discretizations of Parabolic Equations , 2007, SIAM J. Sci. Comput..

[11]  Alfio Borzì,et al.  Multigrid Methods for PDE Optimization , 2009, SIAM Rev..

[12]  J. Wloka,et al.  Partielle differentialgleichungen : sobolevraume und Randwertaufgaben , 1982 .

[13]  Thomas Slawig,et al.  Strategies for time-dependent PDE control with inequality constraints using an integrated modeling and simulation environment , 2008, Numerical Algorithms.

[14]  Roland Becker,et al.  Efficient numerical solution of parabolic optimization problems by finite element methods , 2007, Optim. Methods Softw..

[15]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.

[16]  J. Frédéric Bonnans,et al.  Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control , 2006, Numerische Mathematik.

[17]  M. Hinze,et al.  A Hierarchical Space-Time Solver for Distributed Control of the Stokes Equation , 2008 .

[18]  R. Rannacher Finite element solution of diffusion problems with irregular data , 1984 .

[19]  Monique Chyba,et al.  The role of symplectic integrators in optimal control , 2009 .

[20]  Wolfgang Hackbusch,et al.  A numerical method for solving parabolic equations with opposite orientations , 1978, Computing.

[21]  Ole Østerby Five Ways of Reducing the Crank–Nicolson Oscillations , 2003 .

[22]  Contents , 2020, Neurobiology of Aging.

[23]  Boris Vexler,et al.  A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems , 2019, Constrained Optimization and Optimal Control for Partial Differential Equations.

[24]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[25]  Carsten Carstensen,et al.  Remarks around 50 lines of Matlab: short finite element implementation , 1999, Numerical Algorithms.

[26]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[27]  Boris Vexler,et al.  A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part II: Problems with Control Constraints , 2008, SIAM J. Control. Optim..

[28]  Boris Vexler,et al.  A Priori Error Analysis of the Petrov-Galerkin Crank-Nicolson Scheme for Parabolic Optimal Control Problems , 2011, SIAM J. Control. Optim..

[29]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .