A Further Step towards a Theory of Regular MSC Languages

This paper resumes the study of regular sets of Message Sequence Charts initiated by Henriksen, Mukund, Narayan Kumar & Thiagarajan [10]. Differently from their results, we consider infinite MSCs. It is shown that for bounded sets of infinite MSCs, the notions of recognizability, axiomatizability in monadic second order logic, and acceptance by a deterministic Message Passing Automaton with Muller acceptance condition coincide. We furthermore characterize the expressive power of first order logic and of its extension by modulo-counting quantifiers over bounded infinite MSCs.Complete proofs can be found in the Technical Report [15].

[1]  Madhavan Mukund,et al.  Regular Collections of Message Sequence Charts , 2000, MFCS.

[2]  Anca Muscholl,et al.  Message Sequence Graphs and Decision Problems on Mazurkiewicz Traces , 1999, MFCS.

[3]  Madhavan Mukund,et al.  Towards a Theory of Regular MSC Languages , 1999 .

[4]  Igor Walukiewicz,et al.  An Expressively Complete Linear Time Temporal Logic for Mazurkiewicz Traces , 1997, Inf. Comput..

[5]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[6]  A. Arnold,et al.  An extension of the notions of traces and of asynchronous automata , 1991, RAIRO Theor. Informatics Appl..

[7]  Anca Muscholl,et al.  Logical Definability on Infinite Traces , 1996, Theor. Comput. Sci..

[8]  Dietrich Kuske,et al.  Asynchronous Cellular Automata and Asynchronous Automata for Pomsets , 1998, CONCUR.

[9]  Howard Straubing,et al.  Regular Languages Defined with Generalized Quanifiers , 1995, Inf. Comput..

[10]  Paul Gastin,et al.  Asynchronous cellular automata for pomsets , 2000, Theor. Comput. Sci..

[11]  Madhavan Mukund,et al.  Synthesizing Distributed Finite-State Systems from MSCs , 2000, CONCUR.

[12]  Rémi Morin,et al.  On Regular Message Sequence Chart Languages and Relationships to Mazurkiewicz Trace Theory , 2001, FoSSaCS.

[13]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[14]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[15]  Richard E. Ladner,et al.  Application of Model Theoretic Games to Discrete Linear Orders and Finite Automata , 1977, Inf. Control..

[16]  Robert McNaughton,et al.  Counter-Free Automata (M.I.T. research monograph no. 65) , 1971 .

[17]  Madhavan Mukund,et al.  On Message Sequence Graphs and Finitely Generated Regular MSC Languages , 2000, ICALP.

[18]  Yves Métivier,et al.  Partial Commutation and Traces , 1997, Handbook of Formal Languages.

[19]  Dietrich Kuske,et al.  Pomsets for Local Trace Languages - Recognizability, Logic & Petri Nets , 2000, CONCUR.

[20]  Yves Métivier,et al.  Asynchronous Mappings and Asynchronous Cellular Automata , 1993, Inf. Comput..

[21]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[22]  Rajeev Alur,et al.  Model Checking of Message Sequence Charts , 1999, CONCUR.

[23]  Paul Gastin,et al.  Asynchronous Cellular Automata for Pomsets Without Auto-concurrency , 1996, CONCUR.