Sequential estimation of a linear function of mean vectors

Let π1,...,πk be k independent populations where we assume that the ith population distribution is The parameters and σi e (0,∞) for i = l,...,k are all assumed unknown, but H1einf:,...,Hk are known positive definite pzp matrices. We estimate parameters of the form where ci's are known nonzero constants for i = 1,...,k, by means of ellipsoidal confidence regions. Various two-stage and sequential procedures are proposed and some of their exact and asymptotic properties are studied. Statistical methods and some of their characteristics are discussed both when H1,...,Hk are simultaneously diagonalizable as well as when they are not.

[1]  Sequential Estimation of the Mean of a Multinormal Population , 1980 .

[2]  B. K. Ghosh,et al.  A Two-Stage Procedure for the Behrens-Fisher Problem , 1975 .

[3]  Shoutir Kishore Chatterjee,et al.  On an Extension of Stein's TwoSample Procedure to the MultiNormal Problem , 1959 .

[4]  M. Woodroofe Nonlinear Renewal Theory in Sequential Analysis , 1987 .

[5]  H. Robbins,et al.  A Sequential Analogue of the Behrens-Fisher Problem , 1967 .

[6]  N. Mukhopadhyay,et al.  Fixed size confidence regions for the difference of the means of two multinormal populations , 1986 .

[7]  C. Stein A Two-Sample Test for a Linear Hypothesis Whose Power is Independent of the Variance , 1945 .

[8]  Multivariate sequential point estimation , 1976 .

[9]  N. Mukhopadhyay Sequential Estimation of a Linear Function of Means of Three Normal Populations , 1976 .

[10]  Shanti S. Gupta,et al.  On the smallest of several correlated F statistics , 1962 .

[11]  H. Scheffé Practical Solutions of the Behrens-Fisher Problem , 1970 .

[12]  M. Woodroofe Second Order Approximations for Sequential Point and Interval Estimation , 1977 .

[13]  P. Krishnaiah,et al.  DISTRIBUTION OF THE STUDENTIZED SMALLEST CHI-SQUARE WITH TABLES AND APPLICATIONS, , 1964 .

[14]  N. Mukhopadhyay Remarks on sequential estimation of a linear function of two means: The normal case , 1977 .

[15]  M. Finster Estimation in the General Linear Model when the Accuracy is Specified Before Data Collection , 1985 .

[16]  D. G. Chapman Some two Sample Tests , 1950 .

[17]  J. Al-Mousawi Fixed–size confidence regions for the mean vector of a multinormal distribution , 1986 .

[18]  M. Srivastava On Fixed-Width Confidence Bounds for Regression Parameters and Mean Vector , 1967 .

[19]  H. Scheffé On Solutions of the Behrens-Fisher Problem, Based on the $t$-Distribution , 1943 .

[20]  N. Mukhopadhyay Stein's two-stage procedure and exact consistency , 1982 .