Structure of FUS Protein Fibrils and Its Relevance to Self-Assembly and Phase Separation of Low-Complexity Domains

[1]  Alexander Pines,et al.  Proton‐enhanced NMR of dilute spins in solids , 1973 .

[2]  Gareth A. Morris,et al.  Enhancement of nuclear magnetic resonance signals by polarization transfer , 1979 .

[3]  J T Finch,et al.  Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Andrew E. Bennett,et al.  Heteronuclear decoupling in rotating solids , 1995 .

[5]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[6]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[7]  Z. Derewenda,et al.  Overcoming expression and purification problems of RhoGDI using a family of "parallel" expression vectors. , 1999, Protein expression and purification.

[8]  M. Hong,et al.  Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations , 1999, Journal of biomolecular NMR.

[9]  Kiyonori Takegoshi,et al.  13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR , 2001 .

[10]  David L. Spector,et al.  Nuclear speckles: a model for nuclear organelles , 2003, Nature Reviews Molecular Cell Biology.

[11]  Hartmut Oschkinat,et al.  Determination of solid-state NMR structures of proteins by means of three-dimensional 15N-13C-13C dipolar correlation spectroscopy and chemical shift analysis. , 2003, Biochemistry.

[12]  Huan-Xiang Zhou,et al.  Loops, linkages, rings, catenanes, cages, and crowders: entropy-based strategies for stabilizing proteins. , 2004, Accounts of chemical research.

[13]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[14]  S. Becker,et al.  Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  H. Dyson,et al.  Intrinsically unstructured proteins and their functions , 2005, Nature Reviews Molecular Cell Biology.

[16]  G. Marius Clore,et al.  Using Xplor-NIH for NMR molecular structure determination , 2006 .

[17]  Christopher J. Oldfield,et al.  Intrinsic disorder in transcription factors. , 2006, Biochemistry.

[18]  M. Kiebler,et al.  Neuronal RNA Granules: Movers and Makers , 2006, Neuron.

[19]  D. Baker,et al.  The 3D profile method for identifying fibril-forming segments of proteins. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Heather T. McFarlane,et al.  Atomic structures of amyloid cross-β spines reveal varied steric zippers , 2007, Nature.

[21]  R. Tycko Symmetry-based constant-time homonuclear dipolar recoupling in solid state NMR. , 2007, The Journal of chemical physics.

[22]  J. Rouse,et al.  Identification and characterization of FUS/TLS as a new target of ATM. , 2008, The Biochemical journal.

[23]  Richard D. Leapman,et al.  Molecular structural basis for polymorphism in Alzheimer's β-amyloid fibrils , 2008, Proceedings of the National Academy of Sciences.

[24]  M. Vendruscolo,et al.  The Zyggregator method for predicting protein aggregation propensities. , 2008, Chemical Society reviews.

[25]  R. Tycko,et al.  Measurement of amyloid fibril mass-per-length by tilted-beam transmission electron microscopy , 2009, Proceedings of the National Academy of Sciences.

[26]  Matthias Mann,et al.  A Dual Pressure Linear Ion Trap Orbitrap Instrument with Very High Sequencing Speed* , 2009, Molecular & Cellular Proteomics.

[27]  M. Niepel,et al.  The nuclear pore complex: bridging nuclear transport and gene regulation , 2010, Nature Reviews Molecular Cell Biology.

[28]  B. Meier,et al.  Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy. , 2010, Journal of the American Chemical Society.

[29]  Michail Yu. Lobanov,et al.  FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence , 2010, Bioinform..

[30]  Exploring the sequence determinants of amyloid structure using position-specific scoring matrices , 2010, Nature Methods.

[31]  Edward L. Huttlin,et al.  A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression , 2010, Cell.

[32]  I. Bertini,et al.  A new structural model of Aβ40 fibrils. , 2011, Journal of the American Chemical Society.

[33]  Kan-Nian Hu,et al.  A general Monte Carlo/simulated annealing algorithm for resonance assignment in NMR of uniformly labeled biopolymers , 2011, Journal of biomolecular NMR.

[34]  Jimin Pei,et al.  Cell-free Formation of RNA Granules: Low Complexity Sequence Domains Form Dynamic Fibers within Hydrogels , 2012, Cell.

[35]  T. Muir,et al.  Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. , 2012, Journal of the American Chemical Society.

[36]  Jimin Pei,et al.  Cell-free Formation of RNA Granules: Bound RNAs Identify Features and Components of Cellular Assemblies , 2012, Cell.

[37]  C. Schwieters,et al.  Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N-15N and carbonyl 13C-13C dipolar recoupling data. , 2012, Journal of magnetic resonance (San Diego, Calif. 1997 : Print).

[38]  Salvador Ventura,et al.  AGGRESCAN: method, application, and perspectives for drug design. , 2012, Methods in molecular biology.

[39]  John E Straub,et al.  Role of water in protein aggregation and amyloid polymorphism. , 2011, Accounts of chemical research.

[40]  Pawel Gasior,et al.  FISH Amyloid – a new method for finding amyloidogenic segments in proteins based on site specific co-occurence of aminoacids , 2014, BMC Bioinformatics.

[41]  Anthony Talvas,et al.  MetAmyl: A METa-Predictor for AMYLoid Proteins , 2013, PloS one.

[42]  A. Bax,et al.  Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks , 2013, Journal of Biomolecular NMR.

[43]  Charles D. Schwieters,et al.  Molecular Structure of β-Amyloid Fibrils in Alzheimer’s Disease Brain Tissue , 2013, Cell.

[44]  S. McKnight,et al.  Phosphorylation-Regulated Binding of RNA Polymerase II to Fibrous Polymers of Low-Complexity Domains , 2013, Cell.

[45]  N. Seyfried,et al.  FUS is Phosphorylated by DNA-PK and Accumulates in the Cytoplasm after DNA Damage , 2014, The Journal of Neuroscience.

[46]  R. Tycko,et al.  Site-specific structural variations accompanying tubular assembly of the HIV-1 capsid protein. , 2014, Journal of molecular biology.

[47]  Silvio C. E. Tosatto,et al.  PASTA 2.0: an improved server for protein aggregation prediction , 2014, Nucleic Acids Res..

[48]  Claire H. Michel,et al.  ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function , 2015, Neuron.

[49]  Marco Y. Hein,et al.  A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation , 2015, Cell.

[50]  Ruth Nussinov,et al.  Aβ(1–42) Fibril Structure Illuminates Self-recognition and Replication of Amyloid in Alzheimer’s , 2015, Nature Structural &Molecular Biology.

[51]  Nicolas L. Fawzi,et al.  Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II. , 2015, Molecular cell.

[52]  C. Brangwynne,et al.  The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics , 2015, Proceedings of the National Academy of Sciences.

[53]  Yonghao Yu,et al.  The LC Domain of hnRNPA2 Adopts Similar Conformations in Hydrogel Polymers, Liquid-like Droplets, and Nuclei , 2015, Cell.

[54]  Timothy D. Craggs,et al.  Phase Transition of a Disordered Nuage Protein Generates Environmentally Responsive Membraneless Organelles , 2015, Molecular cell.

[55]  Roy Parker,et al.  Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. , 2015, Molecular cell.

[56]  R. Glockshuber,et al.  Atomic-Resolution Three-Dimensional Structure of Amyloid β Fibrils Bearing the Osaka Mutation , 2014, Angewandte Chemie.

[57]  Sara Linse,et al.  Atomic Resolution Structure of Monomorphic Aβ42 Amyloid Fibrils. , 2016, Journal of the American Chemical Society.

[58]  Charles D. Schwieters,et al.  Solid-State NMR Structure of a Pathogenic Fibril of Full-Length Human α-Synuclein , 2016, Nature Structural &Molecular Biology.

[59]  Robert H. Brown,et al.  Decoding ALS: from genes to mechanism , 2016, Nature.

[60]  Anthony A. Hyman,et al.  Polar Positioning of Phase-Separated Liquid Compartments in Cells Regulated by an mRNA Competition Mechanism , 2016, Cell.

[61]  A. Hyman,et al.  Are aberrant phase transitions a driver of cellular aging? , 2016, BioEssays : news and reviews in molecular, cellular and developmental biology.

[62]  S. McKnight,et al.  Toxic PR Poly-Dipeptides Encoded by the C9orf72 Repeat Expansion Target LC Domain Polymers , 2016, Cell.

[63]  Diana M. Mitrea,et al.  Coexisting Liquid Phases Underlie Nucleolar Subcompartments , 2016, Cell.

[64]  Peter Güntert,et al.  Atomic-resolution structure of a disease-relevant Aβ(1–42) amyloid fibril , 2016, Proceedings of the National Academy of Sciences.

[65]  Anthony A. Hyman,et al.  Biomolecular condensates: organizers of cellular biochemistry , 2017, Nature Reviews Molecular Cell Biology.

[66]  J. Shorter,et al.  RNA-binding proteins with prion-like domains in health and disease. , 2017, The Biochemical journal.

[67]  S. McKnight,et al.  Cross-β polymerization and hydrogel formation by low-complexity sequence proteins. , 2017, Methods.

[68]  S. McKnight,et al.  Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export , 2017, Proceedings of the National Academy of Sciences.