Computing critical points for invariant algebraic systems

Let $\KK$ be a field and $\phi$, $\f = (f_1, \ldots, f_s)$ in $\KK[x_1, \dots, x_n]$ be multivariate polynomials (with $s < n$) invariant under the action of $\Sc_n$, the group of permutations of $\{1, \dots, n\}$. We consider the problem of computing the points at which $\f$ vanish and the Jacobian matrix associated to $\f, \phi$ is rank deficient provided that this set is finite. We exploit the invariance properties of the input to split the solution space according to the orbits of $\Sc_n$. This allows us to design an algorithm which gives a triangular description of the solution space and which runs in time polynomial in $d^s$, ${{n+d}\choose{d}}$ and $\binom{n}{s+1}$ where $d$ is the maximum degree of the input polynomials. When $d,s$ are fixed, this is polynomial in $n$ while when $s$ is fixed and $d \simeq n$ this yields an exponential speed-up with respect to the usual polynomial system solving algorithms.

[1]  É. Schost,et al.  Fast Multivariate Power Series Multiplication in Characteristic Zero , 2003 .

[2]  Jean-Charles Faugère,et al.  Critical points and Gröbner bases: the unmixed case , 2012, ISSAC.

[3]  Bernd Sturmfels,et al.  Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.

[4]  J. Eagon,et al.  Ideals defined by matrices and a certain complex associated with them , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  Cordian Riener,et al.  On the degree and half-degree principle for symmetric polynomials , 2010, 1001.4464.

[6]  Joos Heintz,et al.  Deformation Techniques for Efficient Polynomial Equation Solving , 2000, J. Complex..

[7]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[8]  Rosita Wachenchauzer,et al.  Polynomial equation solving by lifting procedures for ramified fibers , 2004, Theor. Comput. Sci..

[9]  Éric Schost,et al.  Solving determinantal systems using homotopy techniques , 2018, J. Symb. Comput..

[10]  L. Kronecker Grundzüge einer arithmetischen Theorie der algebraische Grössen. , 2022 .

[11]  Juan Sabia,et al.  Affine solution sets of sparse polynomial systems , 2011, J. Symb. Comput..

[12]  Jean-Charles Faugère,et al.  FGb: A Library for Computing Gröbner Bases , 2010, ICMS.

[13]  Pierre-Jean Spaenlehauer,et al.  On the Complexity of Computing Critical Points with Gröbner Bases , 2013, SIAM J. Optim..

[14]  Juan Sabia,et al.  Computing isolated roots of sparse polynomial systems in affine space , 2010, Theor. Comput. Sci..

[15]  Erich Kaltofen,et al.  Solving systems of nonlinear polynomial equations faster , 1989, ISSAC '89.

[16]  J. E. Morais,et al.  Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.

[17]  Éric Schost,et al.  Bit complexity for multi-homogeneous polynomial system solving - Application to polynomial minimization , 2016, J. Symb. Comput..

[18]  Éric Schost,et al.  On the complexity of computing with zero-dimensional triangular sets , 2011, J. Symb. Comput..

[19]  Ariel Waissbein,et al.  Deformation Techniques for Sparse Systems , 2006, Found. Comput. Math..

[20]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[21]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[22]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[23]  C. Riener Symmetric semi-algebraic sets and non-negativity of symmetric polynomials , 2014, 1409.0699.

[24]  Jean-Charles Faugère,et al.  Solving systems of polynomial equations with symmetries using SAGBI-Gröbner bases , 2009, ISSAC '09.

[25]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[26]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[27]  Jean-Charles Faugère,et al.  The membrane inclusions curvature equations , 2003, Adv. Appl. Math..

[28]  Antoine Colin,et al.  Solving a system of algebraic equations with symmetries , 1997 .

[29]  Patrizia M. Gianni,et al.  Algebraic Solution of Systems of Polynomial Equations Using Groebner Bases , 1987, AAECC.

[30]  Markus Bläser,et al.  On the Complexity of Symmetric Polynomials , 2019, ITCS.

[31]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[32]  Nour-Eddine Fahssi,et al.  Polynomial Triangles Revisited , 2012, 1202.0228.

[33]  Juan Sabia,et al.  Elimination for Generic Sparse Polynomial Systems , 2014, Discret. Comput. Geom..

[34]  Jiawang Nie,et al.  Algebraic Degree of Polynomial Optimization , 2008, SIAM J. Optim..

[35]  J. E. Morais,et al.  When Polynomial Equation Systems Can Be "Solved" Fast? , 1995, AAECC.

[36]  Jean-Charles Faugère,et al.  Solving polynomial systems globally invariant under an action of the symmetric group and application to the equilibria of N vortices in the plane , 2012, ISSAC.

[37]  S. Basu,et al.  Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics) , 2006 .

[38]  Marie-Françoise Roy,et al.  Zeros, multiplicities, and idempotents for zero-dimensional systems , 1996 .