Thermal Management in 2.3- $\mu{\hbox {m}}$ Semiconductor Disk Lasers: A Finite Element Analysis

Finite element analysis is used to study heat flow in a 2.3-mum semiconductor disk laser (or vertical-external-cavity surface-emitting laser) based on GalnAsSb-AlGaAsSb. An intra-cavity diamond heatspreader is shown to significantly improve thermal management-and hence power scalability-in this laser compared to the substrate thinning approach typically used in semiconductor disk lasers operating around 1 mum. The parameters affecting the performance of an intracavity heat-spreader are studied in the context of a 2.3-mum semiconductor disk laser: the thermal impedance at the interface between the semiconductor gain material and the heatspreader is found to be much more important than the mounting arrangements for the gain-heatspreader composite; power scaling with pump spot radius-increasing the pump power at constant pump intensity-is found to be intrinsically limited; and the pump wavelength is predicted to have less affect on thermal management than might be expected. Direct pumping of the quantum wells is found to significantly reduce the temperature rise per unit pump power.

[1]  Tomi Jouhti,et al.  A 0.6W cW GaInNAs vertical external cavity surface-emitting laser at 1.32µm , 2004 .

[2]  Joachim Wagner,et al.  Resonant optical in-well pumping of an (AlGaIn)(AsSb)-based vertical-external-cavity surface-emitting laser emitting at 2.35μm , 2007 .

[3]  L. K. Samanta,et al.  The temperature and pressure dependence of refractive indices of some III–V and II–VI binary semiconductors , 1986 .

[4]  N. Dutta,et al.  Performance of gain-guided surface emitting lasers with semiconductor distributed Bragg reflectors , 1991 .

[5]  E. Riis,et al.  0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser , 2003, IEEE Photonics Technology Letters.

[6]  D. Burns,et al.  Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach , 2005, IEEE Journal of Quantum Electronics.

[7]  K. Choquette,et al.  Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers , 2005, IEEE Journal of Quantum Electronics.

[8]  Rüdiger Paschotta,et al.  High power passively mode-locked semiconductor lasers , 2003 .

[9]  A. Tropper,et al.  Vertical-external-cavity semiconductor lasers , 2004 .

[10]  K. Kohler,et al.  Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 /spl mu/m , 2006, IEEE Photonics Technology Letters.

[11]  K. Kohler,et al.  Effect of the Cavity Resonance-Gain Offset on the Output Power Characteristics of GaSb-Based VECSELs , 2007, IEEE Photonics Technology Letters.

[12]  Peter Brick,et al.  8-W high-efficiency continuous-wave semiconductor disk laser at 1000 nm , 2003 .

[13]  J. Bengtsson,et al.  Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Sadao Adachi,et al.  Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y , 1989 .

[15]  K. Kohler,et al.  Tunable, single-frequency, diode-pumped 2.3μm VECSEL , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[16]  A. Allerman,et al.  High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser , 2002 .

[17]  A. Mooradian,et al.  Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams , 1999 .

[18]  Joachim Wagner,et al.  GaSb-based VECSELs emitting at around 2.35 μm employing different optical pumping concepts , 2006, SPIE Photonics Europe.

[19]  A. Forchel,et al.  1-W antimonide-based vertical external cavity surface emitting laser operating at 2-microm. , 2006, Optics express.

[20]  Jerry R. Meyer,et al.  Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices , 2002 .

[21]  Nanometer air gaps in semiconductor wafer bonding , 2001 .

[22]  Adolf Giesen,et al.  Scalable concept for diode-pumped high-power solid-state lasers , 1994 .

[23]  M. Weyers,et al.  Optical in-well pumping of a semiconductor disk laser with high optical efficiency , 2005, IEEE Journal of Quantum Electronics.

[24]  Markus Pessa,et al.  High power CW red VECSEL with linearly polarized TEM00 output beam. , 2005, Optics express.

[25]  Claude Alibert,et al.  Low threshold, room temperature laser diode pumped Sb-based VECSEL emitting around 2.1 /spl mu/m , 2003 .

[26]  Sadao Adachi,et al.  Optical dispersion relations for Si and Ge , 1989 .

[27]  Aram Mooradian,et al.  High-power surface emitting semiconductor laser with extended vertical compound cavity , 2003 .

[28]  Allister I. Ferguson,et al.  Optical in-well pumping of a vertical-external-cavity surface-emitting laser , 2004 .

[29]  Juan L. A. Chilla,et al.  High-power optically pumped semiconductor lasers , 2004, SPIE LASE.

[30]  M. Dawson,et al.  Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser , 2006 .

[31]  Fred H. Pollak,et al.  Optical constants of Ga1−xInxAsySb1−y lattice matched to GaSb (001): Experiment and modeling , 2000 .

[32]  Joachim Wagner,et al.  Barrier- and in-well pumped GaSb-based 2.3 µm VECSELs , 2007 .